Expostulate 发表于 2025-3-23 11:00:48

http://reply.papertrans.cn/16/1553/155253/155253_11.png

Optometrist 发表于 2025-3-23 14:38:04

http://reply.papertrans.cn/16/1553/155253/155253_12.png

A保存的 发表于 2025-3-23 18:09:31

http://reply.papertrans.cn/16/1553/155253/155253_13.png

Permanent 发表于 2025-3-24 01:49:52

,Immanente Philosopheme in ›kamalatta‹,Let . be the synthesis operator of a normalised tight frame for ., i.e., a . matrix with . (Proposition .). Since ., the collection of normalised tight frames of . vectors for a space of dimension . can be viewed as an . (in .), as can other classes of frames, such as the equal-norm tight frames.

书法 发表于 2025-3-24 05:29:06

http://reply.papertrans.cn/16/1553/155253/155253_15.png

watertight, 发表于 2025-3-24 07:26:20

Zusammenfassung der Ergebnisse,The angle preserving transformations of . form the ..which can be thought of as the symmetries of the inner product space ..

CLAIM 发表于 2025-3-24 12:42:08

http://reply.papertrans.cn/16/1553/155253/155253_17.png

diskitis 发表于 2025-3-24 18:21:51

Die Untergruppen der Suzukigruppen,Here we consider the tight .-frames for . .. We will see that:

maudtin 发表于 2025-3-24 21:02:41

http://reply.papertrans.cn/16/1553/155253/155253_19.png

growth-factor 发表于 2025-3-24 23:22:34

https://doi.org/10.1007/978-3-663-01687-8If . is a finite . group, then there are a . number of tight .-frames, i.e., the harmonic frames (see §.). If . is ., then there is an . number of unitarily inequivalent .-frames (see Proposition 10.1).
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: An Introduction to Finite Tight Frames; Shayne F. D. Waldron Textbook 2018 Springer Science+Business Media, LLC 2018 Heisenberg frames.MAT