Expostulate 发表于 2025-3-23 11:00:48
http://reply.papertrans.cn/16/1553/155253/155253_11.pngOptometrist 发表于 2025-3-23 14:38:04
http://reply.papertrans.cn/16/1553/155253/155253_12.pngA保存的 发表于 2025-3-23 18:09:31
http://reply.papertrans.cn/16/1553/155253/155253_13.pngPermanent 发表于 2025-3-24 01:49:52
,Immanente Philosopheme in ›kamalatta‹,Let . be the synthesis operator of a normalised tight frame for ., i.e., a . matrix with . (Proposition .). Since ., the collection of normalised tight frames of . vectors for a space of dimension . can be viewed as an . (in .), as can other classes of frames, such as the equal-norm tight frames.书法 发表于 2025-3-24 05:29:06
http://reply.papertrans.cn/16/1553/155253/155253_15.pngwatertight, 发表于 2025-3-24 07:26:20
Zusammenfassung der Ergebnisse,The angle preserving transformations of . form the ..which can be thought of as the symmetries of the inner product space ..CLAIM 发表于 2025-3-24 12:42:08
http://reply.papertrans.cn/16/1553/155253/155253_17.pngdiskitis 发表于 2025-3-24 18:21:51
Die Untergruppen der Suzukigruppen,Here we consider the tight .-frames for . .. We will see that:maudtin 发表于 2025-3-24 21:02:41
http://reply.papertrans.cn/16/1553/155253/155253_19.pnggrowth-factor 发表于 2025-3-24 23:22:34
https://doi.org/10.1007/978-3-663-01687-8If . is a finite . group, then there are a . number of tight .-frames, i.e., the harmonic frames (see §.). If . is ., then there is an . number of unitarily inequivalent .-frames (see Proposition 10.1).