adulterant 发表于 2025-3-25 04:29:12
,Die “innere Biographie” der Autoren, of finite fields may wish to proceed directly to Chapter 3. As the material regarding minimal polynomials (§2.4) and Zech’s log tables (§2.6) is not referenced until §5.8, other readers may wish to bypass these sec tions until that time. For a more complete introduction to finite fields, the reader使成核 发表于 2025-3-25 11:14:05
Die Submikroskopische Pathologie der Lunge, be constructed. Many error-correcting codes in use and under investigation are subclasses of linear codes defined by imposing additional structural constraints. The cyclic codes of Chapter 5 are a prime example, and the BCH-codes of Chapter 6 are a further refinement of these.Console 发表于 2025-3-25 14:16:07
http://reply.papertrans.cn/16/1553/155248/155248_23.pngFsh238 发表于 2025-3-25 16:25:40
http://reply.papertrans.cn/16/1553/155248/155248_24.png失误 发表于 2025-3-25 23:39:48
http://reply.papertrans.cn/16/1553/155248/155248_25.png遍及 发表于 2025-3-26 01:42:16
https://doi.org/10.1007/978-3-663-02246-6icular, we introduce the well known Reed-Solomon codes, and discuss the ideas of channel erasures and interleaving. While these concepts are of general interest, we find it motivating to focus our discussion, bringing these ideas together by considering their particular application in the digital auoxidant 发表于 2025-3-26 04:45:47
http://reply.papertrans.cn/16/1553/155248/155248_27.png沙发 发表于 2025-3-26 08:34:29
0893-3405 dest 163 5. 6 Syndromes and Simple Decoding Procedures 168 5. 7 Burst Error Correcting 175 5. 8 Finite Fields and Factoring xn-l over GF(q) 181 5. 9 Another Method for Factoring xn-l over GF(q)t 187 5. 10 Exercises 193 Chapter 6 BCH Codes and Bounds for Cyclic Codes 6. 1 Introduction 201 6. 2 BCH Co预定 发表于 2025-3-26 15:54:36
http://reply.papertrans.cn/16/1553/155248/155248_29.pngLasting 发表于 2025-3-26 17:57:27
http://reply.papertrans.cn/16/1553/155248/155248_30.png