正当理由
发表于 2025-3-21 19:33:38
书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0155238<br><br> <br><br>书目名称An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0155238<br><br> <br><br>
通知
发表于 2025-3-21 21:49:08
Overview of Galerkin Methodsthe choices that we have at our disposal. We can categorize the possible methods as follows: .Generally speaking, the most widely used differential form method is the finite difference method while the most widely used integral form method is the Galerkin method (e.g., finite elements).
ERUPT
发表于 2025-3-22 01:13:30
http://reply.papertrans.cn/16/1553/155238/155238_3.png
单调女
发表于 2025-3-22 04:39:19
http://reply.papertrans.cn/16/1553/155238/155238_4.png
bisphosphonate
发表于 2025-3-22 09:04:29
http://reply.papertrans.cn/16/1553/155238/155238_5.png
填满
发表于 2025-3-22 16:00:38
http://reply.papertrans.cn/16/1553/155238/155238_6.png
overshadow
发表于 2025-3-22 20:20:58
1D Continuous Galerkin Methods for Elliptic Equationsonservation laws for both CG and DG. However, these types of equations are entirely hyperbolic (first order equations in these cases). In this chapter we learn how to use the CG method to discretize second order equations that are elliptic.
MEAN
发表于 2025-3-23 00:49:13
1D Discontinuous Galerkin Methods for Elliptic Equationsw how to compute first derivatives. A judicious use of Green’s first identity then permits a simple discretization of the Laplacian operator. We learn in this chapter that DG cannot use the same representation of the Laplacian operator. Rather, we need to revisit first order derivatives and construc
脱毛
发表于 2025-3-23 05:18:55
http://reply.papertrans.cn/16/1553/155238/155238_9.png
epicondylitis
发表于 2025-3-23 05:32:04
http://reply.papertrans.cn/16/1553/155238/155238_10.png