周兴旺 发表于 2025-3-27 00:43:24

http://reply.papertrans.cn/16/1553/155224/155224_31.png

享乐主义者 发表于 2025-3-27 03:56:33

http://reply.papertrans.cn/16/1553/155224/155224_32.png

聚集 发表于 2025-3-27 06:33:47

https://doi.org/10.1007/978-3-642-91640-3Discrete systems are described by maps or difference equations. The composition of map generates the dynamics or flow of a discrete system. The fixed points and their characters, some important theorems, periodic cycles, attractors, Schwarzian derivative and its properties with examples are discussed at length.

魅力 发表于 2025-3-27 09:57:33

https://doi.org/10.1007/978-981-99-7695-9bifurcation theory; chaos theory; conjugacy; flows; fractals; Hamiltonian flows; Lie symmetry analysis; osc

通知 发表于 2025-3-27 17:40:56

978-981-99-7697-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor

LAIR 发表于 2025-3-27 21:37:27

Chaos,. On the other hand, there are some universal numbers applicable for particular class of systems, for example, the Feigenbaum number, Golden mean, etc. The Lorenz system is a paradigm of deterministic dissipative chaotic systems. The universality is an important feature in chaotic dynamics.

Provenance 发表于 2025-3-27 23:27:51

http://reply.papertrans.cn/16/1553/155224/155224_37.png

Fibrinogen 发表于 2025-3-28 03:18:34

http://reply.papertrans.cn/16/1553/155224/155224_38.png

承认 发表于 2025-3-28 07:06:36

http://reply.papertrans.cn/16/1553/155224/155224_39.png

constellation 发表于 2025-3-28 11:35:14

https://doi.org/10.1007/978-3-642-90807-1ear system does not provide always the actual solution behaviors of the original nonlinear system. Nonlinear systems have interesting solution features. This chapter deals with oscillatory solutions in linear and nonlinear equations, their properties and some applications. 
页: 1 2 3 [4] 5 6
查看完整版本: Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u