揉杂 发表于 2025-3-23 12:57:02

Combinatorial Theory of Convex Polytopes,At the beginning of Section 10 it was indicated that the combinatorial theory of convex polytopes may be described as the study of their face-lattices. When it comes to reality, however, this description is too ambitious. Instead, we shall describe the combinatorial theory as the study of .-vectors.

珐琅 发表于 2025-3-23 16:55:34

http://reply.papertrans.cn/16/1552/155197/155197_12.png

Estimable 发表于 2025-3-23 21:58:02

http://reply.papertrans.cn/16/1552/155197/155197_13.png

BIDE 发表于 2025-3-23 23:15:27

Humor — Eine Annäherung an ein Phänomenrk for studying convex sets is the notion of a Euclidean space, i.e. a finite-dimensional real affine space whose underlying linear space is equipped with an inner product. However, there is no essential loss of generality in working only with the more concrete spaces ℝ.; therefore, everything will

调整校对 发表于 2025-3-24 03:20:57

http://reply.papertrans.cn/16/1552/155197/155197_15.png

Mucosa 发表于 2025-3-24 09:05:25

http://reply.papertrans.cn/16/1552/155197/155197_16.png

Irascible 发表于 2025-3-24 14:41:50

5楼

obstinate 发表于 2025-3-24 18:07:14

6楼

nonchalance 发表于 2025-3-24 19:24:31

6楼

Needlework 发表于 2025-3-25 01:47:45

6楼
页: 1 [2] 3 4
查看完整版本: Titlebook: An Introduction to Convex Polytopes; Arne Brøndsted Textbook 1983 Springer Science+Business Media New York 1983 Equivalence.Konvexes Polyt