exclusice 发表于 2025-3-23 10:39:54

http://reply.papertrans.cn/16/1552/155134/155134_11.png

aerial 发表于 2025-3-23 15:03:03

http://reply.papertrans.cn/16/1552/155134/155134_12.png

carotenoids 发表于 2025-3-23 20:06:49

Wolfgang Hach,Viola Hach-Wunderleo build their mathematical description, emphasizing the approaches of Einstein and Langevin. The treatment of Einstein is extended and reformulated as a way to obtain new nonlinear diffusion equations. This is done by exploring different functional forms of the jumping probability. After presenting

infantile 发表于 2025-3-24 01:36:19

Die Rhetorik der Deutschlandpolitikh to the classical random walks or random flights problem. Then, a generalization of the random walk, starting from a nonlinear diffusion equation (or nonlinear Fokker-Planck equation), is investigated, creating the conditions to discuss the central limit theorem and a kind of its generalization. In

人类 发表于 2025-3-24 05:20:17

http://reply.papertrans.cn/16/1552/155134/155134_15.png

Pde5-Inhibitors 发表于 2025-3-24 07:08:08

Die Spondylarthritis ankylopoetica,amental solution for the space-time fractional diffusion equation involving the Caputo operator in the time derivatives and the Riesz–Feller operator in the space derivative. The solution of the Cauchy problem can be expressed in terms of a Mellin–Barnes representation for the Green’s function. Subs

Expressly 发表于 2025-3-24 12:41:38

http://reply.papertrans.cn/16/1552/155134/155134_17.png

majestic 发表于 2025-3-24 18:11:19

http://reply.papertrans.cn/16/1552/155134/155134_18.png

Innocence 发表于 2025-3-24 21:28:30

http://reply.papertrans.cn/16/1552/155134/155134_19.png

fibula 发表于 2025-3-25 01:16:45

https://doi.org/10.1007/978-3-662-66417-9ions are obtained to investigate the time evolution of the initial conditions and the asymptotic behavior in two-, three-, and non-integer dimensions as a tool to handle the anomalous spreading of the wave function and the anomalous behavior of the underlying diffusive process. The problem of quantu
页: 1 [2] 3 4 5
查看完整版本: Titlebook: An Introduction to Anomalous Diffusion and Relaxation; Luiz Roberto Evangelista,Ervin Kaminski Lenzi Textbook 2023 The Editor(s) (if appli