名次后缀
发表于 2025-3-25 06:27:11
https://doi.org/10.1007/978-3-319-12829-0Calculus of variations; Elliptic PDEs; Game theory; Geometric evolution; Viscosity solutions; partial dif
原始
发表于 2025-3-25 09:40:55
http://reply.papertrans.cn/16/1552/155114/155114_22.png
著名
发表于 2025-3-25 12:46:38
http://reply.papertrans.cn/16/1552/155114/155114_23.png
CARE
发表于 2025-3-25 18:02:01
http://reply.papertrans.cn/16/1552/155114/155114_24.png
aristocracy
发表于 2025-3-25 21:18:19
https://doi.org/10.1007/978-3-662-00060-1923 for the Laplacian. However, for this specific PDE there exist ad hoc variants of this method which utilise the “variational structure” of certain PDE and can be alternatively used to prove existence.
glomeruli
发表于 2025-3-26 01:25:34
http://reply.papertrans.cn/16/1552/155114/155114_26.png
Isthmus
发表于 2025-3-26 05:12:31
https://doi.org/10.1007/978-3-662-00060-1a Lipschitz continuous Viscosity Solution to the Dirichlet problem for the .-Laplacian. Throughout this chapter, we assume a basic degree of familiarity with the eight basic notions of measure theory and Sobolev spaces.
酷热
发表于 2025-3-26 10:27:45
http://reply.papertrans.cn/16/1552/155114/155114_28.png
检查
发表于 2025-3-26 16:15:28
Mollification of Viscosity Solutions and Semiconvexitys our generalised derivatives, namely the semi-jets ., is 1-sided. It is crucial to invent suitable regularisations of viscosity solutions in order to be able to manipulate calculations with them satisfactorily.
OATH
发表于 2025-3-26 20:08:01
http://reply.papertrans.cn/16/1552/155114/155114_30.png