CLEAR 发表于 2025-3-23 10:08:46

The generalisation: a solution for spheres of arbitrary dimension, which gives rise to a Lie bracket and hence to a Lie algebra generated by Killing tensors. On one hand, we can use the metric to identify the symmetric bilinear form K.. with a symmetric endomorphism ..

动物 发表于 2025-3-23 17:37:49

The perspectives: applications and generalisations,iable by successfully carrying it out for the simplest non-trivial family of examples – that of spheres. In particular, we elucidated the natural algebro-geometric structure of the parameter space classifying equivalence classes of separation coordinates, which for a long time had only been known as

spinal-stenosis 发表于 2025-3-23 21:24:52

http://reply.papertrans.cn/16/1549/154813/154813_13.png

Agnosia 发表于 2025-3-23 22:52:47

http://image.papertrans.cn/a/image/154813.jpg

红润 发表于 2025-3-24 02:40:40

http://reply.papertrans.cn/16/1549/154813/154813_15.png

Ganglion 发表于 2025-3-24 08:51:31

http://reply.papertrans.cn/16/1549/154813/154813_16.png

aggressor 发表于 2025-3-24 11:45:47

http://reply.papertrans.cn/16/1549/154813/154813_17.png

Infantry 发表于 2025-3-24 15:33:55

http://reply.papertrans.cn/16/1549/154813/154813_18.png

托运 发表于 2025-3-24 19:12:10

http://reply.papertrans.cn/16/1549/154813/154813_19.png

ALIBI 发表于 2025-3-25 01:17:03

http://reply.papertrans.cn/16/1549/154813/154813_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: An Algebraic Geometric Approach to Separation of Variables; Konrad Schöbel Book 2015 Springer Fachmedien Wiesbaden GmbH 2015 Killing tenso