EVOKE 发表于 2025-3-21 18:58:03

书目名称Algorithms for Quadratic Matrix and Vector Equations影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0153232<br><br>        <br><br>书目名称Algorithms for Quadratic Matrix and Vector Equations读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0153232<br><br>        <br><br>

挫败 发表于 2025-3-21 20:32:45

http://reply.papertrans.cn/16/1533/153232/153232_2.png

抱怨 发表于 2025-3-22 01:19:40

Jürgen Isberg,Hans-Horst RosackerThe problem of reducing an algebraic Riccati equation (5) to a unilateral quadratic matrix equation (2) has been considered in .

多嘴 发表于 2025-3-22 06:00:12

http://reply.papertrans.cn/16/1533/153232/153232_4.png

Grating 发表于 2025-3-22 11:02:45

http://reply.papertrans.cn/16/1533/153232/153232_5.png

禁令 发表于 2025-3-22 12:59:52

Storage-optimal algorithms for Cauchy-like matricesSeveral classes of algorithms for the numerical solution of Toeplitz-like and Cauchy-like linear systems exist in the literature. We refer the reader to for an extended introduction on this topic, with descriptions of each method and plenty of citations to the relevant papers, and only summarize them in Table 7.1.

等待 发表于 2025-3-22 20:31:36

https://doi.org/10.33283/978-3-86298-846-4se of . The notation I., with . often omitted when it is clear from the context, denotes the identity matrix; the zero matrix of any dimension is denoted simply by 0. With . we denote the vector of suitable dimension all of whose entries are 1. The expression ρ (.) stands for the spectral radius of

温和女人 发表于 2025-3-22 22:53:27

http://reply.papertrans.cn/16/1533/153232/153232_8.png

国家明智 发表于 2025-3-23 03:21:06

http://reply.papertrans.cn/16/1533/153232/153232_9.png

的是兄弟 发表于 2025-3-23 05:49:54

Jürgen Isberg,Hans-Horst Rosackererical algorithms, taken mainly from . Moreover, we describe several attempts to generalize the logarithmic reduction algorithm to a generic quadratic vector equation in the framework of Chapter 2, that lead to an unexpected connection with Newton’s algorithm. While the original results containe
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Algorithms for Quadratic Matrix and Vector Equations; Federico Poloni Book 2011 The Editor(s) (if applicable) and The Author(s), under exc