CK828 发表于 2025-3-21 17:51:58

书目名称Algorithms for Discrete Fourier Transform and Convolution影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0153219<br><br>        <br><br>书目名称Algorithms for Discrete Fourier Transform and Convolution读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0153219<br><br>        <br><br>

cocoon 发表于 2025-3-21 21:09:03

http://reply.papertrans.cn/16/1533/153219/153219_2.png

Initial 发表于 2025-3-22 02:15:45

Partnerinnen und Töchter im Vergleichte the resulting factorization by combining Rader and Winograd small FFT algorithms. The basic factorization is . where . is a block diagonal matrix with small skew-circulant blocks (rotated Winograd cores) and tensor product of these small skew-circulant blocks, and . is a pre-addition matrix with all its entries being 0, 1 or −1.

MELON 发表于 2025-3-22 05:39:32

http://reply.papertrans.cn/16/1533/153219/153219_4.png

船员 发表于 2025-3-22 10:40:32

Good-Thomas PFA,r in structure to these additive algorithms, but no longer requiring the twiddle factor multiplication. The idea is due to Good in 1958 and Thomas in 1963, and the resulting algorithm is called the Good-Thomas Prime Factor algorithm (PFA).

invade 发表于 2025-3-22 14:50:34

http://reply.papertrans.cn/16/1533/153219/153219_6.png

aqueduct 发表于 2025-3-22 18:16:10

http://reply.papertrans.cn/16/1533/153219/153219_7.png

Negotiate 发表于 2025-3-23 00:57:27

Partnerinnen und Töchter im Vergleich convolution theorem which returns the computation to an FFT computation. Since the size (.−1) is a composite number, the (.−1)-point FT can be handled by Cooley-Tukey FFT algorithms. The Winograd algorithm for small convolutions can also be applied to the skew-circulant action.

prick-test 发表于 2025-3-23 04:29:01

https://doi.org/10.1007/978-3-658-11082-6 of Rader’s multiplicative FT algorithms, we derive the fundamental factorization . where . is a block-diagonal matrix having skew-circulant blocks (rotated Winograd cores) and tensor products of these skew-circulant blocks and . is a matrix of pre-additions, all of whose entries are 0, 1 or −1. Variants will then be derived.

无动于衷 发表于 2025-3-23 08:53:12

http://reply.papertrans.cn/16/1533/153219/153219_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Algorithms for Discrete Fourier Transform and Convolution; R. Tolimieri,Myoung An,Chao Lu,C. S. Burrus (Profe Book 19891st edition Springe