Consonant 发表于 2025-3-21 20:01:29
书目名称Algorithmic Number Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0152997<br><br> <br><br>书目名称Algorithmic Number Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0152997<br><br> <br><br>流利圆滑 发表于 2025-3-21 21:29:05
http://reply.papertrans.cn/16/1530/152997/152997_2.png金丝雀 发表于 2025-3-22 00:40:53
http://reply.papertrans.cn/16/1530/152997/152997_3.png拒绝 发表于 2025-3-22 07:22:44
Das Leistungs- und Produktportfoliohe base .. It is widely conjectured, but not proved, that . > 3 for infinitely many .. We show the stronger result that . > (log .). for infinitely many .. We also show that there are finite sets of odd composites which do not have a ., namely a common witness for all of the numbers in the set.GIBE 发表于 2025-3-22 11:48:21
Geschäftsmodell/Unternehmenskonzeptgorithm. Our experiments indicate that we have achieved a substantial speed-up compared to other implementations that are reported in the literature. The main improvements are a new lattice sieving technique and a trial division method that is based on lattice sieving in a hash table. This also alloVERT 发表于 2025-3-22 15:42:29
https://doi.org/10.1007/978-3-8349-9232-1s do not appear to be easily adaptable for finding discrete logarithms in the groups associated with elliptic curves and the Jacobians of hyperelliptic curves. This has led to the development of cryptographic systems based on the discrete logarithm problem for such groups . In this paper aCORD 发表于 2025-3-22 18:36:29
http://reply.papertrans.cn/16/1530/152997/152997_7.pngHeart-Attack 发表于 2025-3-23 00:06:36
http://reply.papertrans.cn/16/1530/152997/152997_8.pngcardiac-arrest 发表于 2025-3-23 02:31:17
http://reply.papertrans.cn/16/1530/152997/152997_9.pngFirefly 发表于 2025-3-23 08:39:57
http://reply.papertrans.cn/16/1530/152997/152997_10.png