启发 发表于 2025-3-28 15:20:13
From Class Groups to Class Fieldsinterest. This is documented, for example, by a regular meeting ANTS (algebraic number theory symposium) every two years whose proceedings [.], [.] give a good survey about ongoing research. Also there are several computer algebra packages concentrating on number theoretical computations. At present慢慢啃 发表于 2025-3-28 22:26:17
Extremal Latticesne in 1975; a finiteness result dealing with the hypothetical theta series of such lattices was given. Recently, H.-G. Quebbemann has extended the notion to so called modular even lattices of levels 2, 3, 5, 7, 11 and 23, and part of the genera of levels 6, 14 and 15 containing strongly modular latt发生 发表于 2025-3-29 01:52:40
http://reply.papertrans.cn/16/1529/152881/152881_43.png大门在汇总 发表于 2025-3-29 05:27:25
http://reply.papertrans.cn/16/1529/152881/152881_44.png四海为家的人 发表于 2025-3-29 09:03:16
http://reply.papertrans.cn/16/1529/152881/152881_45.png联想记忆 发表于 2025-3-29 13:57:26
Computational Aspects of the Isomorphism Problempresent some basic results obtained in recent years, explain the ideas behind them, and give lots of examples; proofs are usually omitted but we provide explicit references to an extensive bibliography.obstruct 发表于 2025-3-29 19:33:15
http://reply.papertrans.cn/16/1529/152881/152881_47.pngexpository 发表于 2025-3-29 23:34:10
http://reply.papertrans.cn/16/1529/152881/152881_48.png万神殿 发表于 2025-3-30 01:30:59
inal conference of the Ger man research program (Schwerpunktprogramm) Algorithmic Number The ory and Algebra 1991-1997, sponsored by the Deutsche Forschungsgemein schaft. The purpose of this research program and of the meeting was to bring together developers of computer algebra software and rese聪明 发表于 2025-3-30 06:33:32
Kleinschalig, wat is dat eigenlijk?,shkhanov, Lure und Faddeev (1997) vorhanden sind, kann ich mich bei der Zusammenstellung der Grundlagen sehr kurz fassen. Eine ausftihrliche Darstellung mit Beweisen der meisten der hier zusammengestellten Resultate wird im Ergebnisbericht Malle, Matzat (1998) enthalten sein.