encroach 发表于 2025-3-21 18:46:35

书目名称Algebraic-Geometric Codes影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0152770<br><br>        <br><br>书目名称Algebraic-Geometric Codes读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0152770<br><br>        <br><br>

轻快来事 发表于 2025-3-21 22:29:24

Rational Points; Section 2.3.2 contains basic properties of F.-rational points on a curve over F., including the question about the number of points. In Section 2.3.3 we study the asymptotic behaviour of the number ofF.-rational points on a curve of high genus.

mercenary 发表于 2025-3-22 04:29:17

Anne Le Huérou,Amandine Regameyderstand the behaviour of parameters better. In this chapter we state the problems rigorously and discuss those results that do not use algebraic-geometric codes. We shall return to asymptotic problems in Chapter 3.4, since asymptotic results are the best to demonstrate the power of algebraic-geometric methods.

VEN 发表于 2025-3-22 06:53:07

http://reply.papertrans.cn/16/1528/152770/152770_4.png

microscopic 发表于 2025-3-22 09:21:32

https://doi.org/10.1007/978-3-030-25294-6hemes possesses a powerful technique for constructing algebraic varieties based on the notion of a representable functor. Many results of this book can not be obtained without use of moduli schemes. In this chapter we give a brief introduction to this theme.

芳香一点 发表于 2025-3-22 15:42:37

http://reply.papertrans.cn/16/1528/152770/152770_6.png

洞察力 发表于 2025-3-22 18:06:55

http://reply.papertrans.cn/16/1528/152770/152770_7.png

NOVA 发表于 2025-3-23 00:28:29

Decoding In Section 3.3.3 we also consider plane curves, for which it is possible to correct about ./4 errors more than in the general case, and also codes obtained from AG-codes by concatenation and field restriction.

AVID 发表于 2025-3-23 02:36:20

Algebraic-Geometric Codes978-94-011-3810-9Series ISSN 0169-6378

边缘 发表于 2025-3-23 06:17:02

0169-6378 Overview: 978-1-4020-0335-6978-94-011-3810-9Series ISSN 0169-6378
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Algebraic-Geometric Codes; M. A. Tsfasman,S. G. Vlăduţ Book 1991 Kluwer Academic Publishers and Copyright Holders 1991 algebraic curve.ana