挑染
发表于 2025-3-21 19:49:09
书目名称Algebraic Topology - Homotopy and Homology影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0152743<br><br> <br><br>书目名称Algebraic Topology - Homotopy and Homology读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0152743<br><br> <br><br>
解脱
发表于 2025-3-21 21:53:03
http://reply.papertrans.cn/16/1528/152743/152743_2.png
artifice
发表于 2025-3-22 00:36:50
,Mehrheit von Schädigern (§§ 830, 840),ave one standard trick for showing two functions are not homotopic: for any cohomology theory . if .*. .(.(.)) → .(.), then . ≄. and hence ξ ≄ η. Therefore we look for an appropriate . and some .(.(.))such that .*.(x) ≠ .*.(.) ∈ .*(.).
Aromatic
发表于 2025-3-22 05:04:02
http://reply.papertrans.cn/16/1528/152743/152743_4.png
除草剂
发表于 2025-3-22 12:36:50
http://reply.papertrans.cn/16/1528/152743/152743_5.png
歌曲
发表于 2025-3-22 16:12:30
http://reply.papertrans.cn/16/1528/152743/152743_6.png
CLIFF
发表于 2025-3-22 20:29:19
http://reply.papertrans.cn/16/1528/152743/152743_7.png
唤醒
发表于 2025-3-22 21:22:39
,Haftung für Drittschäden (§§ 844-846),suitable exactness axiom we shall find a .-complex (., .) and a natural equivalence .: [-; ., .] → ., *. We shall also prove such a theorem for cofunctors ., * defined only on the category .’. of finite .-complexes provided .* takes values in .. . is called a .for . *.
钢盔
发表于 2025-3-23 02:37:46
http://reply.papertrans.cn/16/1528/152743/152743_9.png
GRAVE
发表于 2025-3-23 06:50:03
http://reply.papertrans.cn/16/1528/152743/152743_10.png