万圣节 发表于 2025-3-21 18:40:29

书目名称Algebraic Topology and Transformation Groups影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0152740<br><br>        <br><br>书目名称Algebraic Topology and Transformation Groups读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0152740<br><br>        <br><br>

HEPA-filter 发表于 2025-3-21 23:19:36

http://reply.papertrans.cn/16/1528/152740/152740_2.png

青石板 发表于 2025-3-22 01:26:29

http://reply.papertrans.cn/16/1528/152740/152740_3.png

Occlusion 发表于 2025-3-22 07:25:50

http://reply.papertrans.cn/16/1528/152740/152740_4.png

Aromatic 发表于 2025-3-22 12:26:25

http://reply.papertrans.cn/16/1528/152740/152740_5.png

概观 发表于 2025-3-22 13:35:08

https://doi.org/10.1007/978-3-540-72808-5… is determined by its quadratic 2-type, if the 2-Sylow subgroup has 4-periodic cohomology.

搬运工 发表于 2025-3-22 20:16:28

TEAM-CBT and Deliberate PracticeLet V be an orthogonal representation of G=S. and let S(V), S(V⊕R) be the unit spheres in V, V⊕R respectively. In this paper we classify S.-equivariant maps S(V⊕R) → S(V). More precisely we construct an isomorphism . → A(V) where A(V) = = ⊕(. Z), H⊂S. runs over all isotropy subgroups of V different from S..

四牛在弯曲 发表于 2025-3-23 00:42:26

The homotopy type of a 4-manifold with finite fundamental group,… is determined by its quadratic 2-type, if the 2-Sylow subgroup has 4-periodic cohomology.

Optometrist 发表于 2025-3-23 03:17:30

An S1-degree and S1-maps between representation spheres,Let V be an orthogonal representation of G=S. and let S(V), S(V⊕R) be the unit spheres in V, V⊕R respectively. In this paper we classify S.-equivariant maps S(V⊕R) → S(V). More precisely we construct an isomorphism . → A(V) where A(V) = = ⊕(. Z), H⊂S. runs over all isotropy subgroups of V different from S..

惹人反感 发表于 2025-3-23 05:37:04

Lecture Notes in Mathematicshttp://image.papertrans.cn/a/image/152740.jpg
页: [1] 2 3 4 5
查看完整版本: Titlebook: Algebraic Topology and Transformation Groups; Proceedings of a Con Tammo Dieck Conference proceedings 1988 Springer-Verlag Berlin Heidelber