法庭 发表于 2025-3-21 19:29:42

书目名称Algebraic Surfaces and Holomorphic Vector Bundles影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0152709<br><br>        <br><br>书目名称Algebraic Surfaces and Holomorphic Vector Bundles读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0152709<br><br>        <br><br>

interior 发表于 2025-3-21 23:20:31

Introduction,ationship with the period map. Another deep result which seems to be inaccessible to the classical methods is the Bogomolov-Miyaoka-Yau inequality . ≤ 3.. Moreover, the new methods could be extended to the study of compact complex surfaces (Kodaira) or algebraic surfaces in positive characteristic (

索赔 发表于 2025-3-22 02:44:41

http://reply.papertrans.cn/16/1528/152709/152709_3.png

concubine 发表于 2025-3-22 05:18:48

Vector Bundles over Ruled Surfaces,want to study. We will further study bundles on the surface . by studying their restrictions to the fibers of the fibration. This method of studying bundles on a surface by looking at their restrictions to curves on the surface is one which has been successfully applied in a wide variety of contexts

攀登 发表于 2025-3-22 12:18:46

http://reply.papertrans.cn/16/1528/152709/152709_5.png

澄清 发表于 2025-3-22 16:49:21

Charalampos Tsakmakis,Adrian Willuweitationship with the period map. Another deep result which seems to be inaccessible to the classical methods is the Bogomolov-Miyaoka-Yau inequality . ≤ 3.. Moreover, the new methods could be extended to the study of compact complex surfaces (Kodaira) or algebraic surfaces in positive characteristic (

含糊其辞 发表于 2025-3-22 20:24:47

http://reply.papertrans.cn/16/1528/152709/152709_7.png

Crater 发表于 2025-3-23 00:43:08

Dislocations and Brittle Fracture in Metalswant to study. We will further study bundles on the surface . by studying their restrictions to the fibers of the fibration. This method of studying bundles on a surface by looking at their restrictions to curves on the surface is one which has been successfully applied in a wide variety of contexts

LVAD360 发表于 2025-3-23 05:17:15

http://reply.papertrans.cn/16/1528/152709/152709_9.png

欲望小妹 发表于 2025-3-23 07:48:52

http://reply.papertrans.cn/16/1528/152709/152709_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Algebraic Surfaces and Holomorphic Vector Bundles; Robert Friedman Textbook 1998 Springer Science+Business Media New York 1998 Blowing up.