无限 发表于 2025-3-21 17:12:48
书目名称Algebraic Surfaces影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0152708<br><br> <br><br>书目名称Algebraic Surfaces读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0152708<br><br> <br><br>许可 发表于 2025-3-21 20:28:26
Algebraic Surfaces978-1-4757-3512-3Series ISSN 0172-5939 Series E-ISSN 2191-6675过于平凡 发表于 2025-3-22 02:28:38
http://reply.papertrans.cn/16/1528/152708/152708_3.png范例 发表于 2025-3-22 06:58:49
Deformation Processes in TRIP/TWIP SteelsThroughout this chapter . will denote a nonsingular projective surface defined over an algebraically closed field k of arbitrary characteristic, and . will denote a canonical divisor on ..禁令 发表于 2025-3-22 10:12:43
http://reply.papertrans.cn/16/1528/152708/152708_5.png卜闻 发表于 2025-3-22 14:20:09
http://reply.papertrans.cn/16/1528/152708/152708_6.png我悲伤 发表于 2025-3-22 19:50:33
https://doi.org/10.1007/978-1-4419-1596-2From this point on by . we mean a nonsingular projective surface . defined over an algebraically closed field k of arbitrary characteristic. When we have to deal with surfaces with singularities, we state that explicitly (for example: let . be a normal surface...).盘旋 发表于 2025-3-22 22:14:49
https://doi.org/10.1007/978-1-4419-1596-2Let . be a surface. . is a . if every birational morphism . → ., with . surface (nonsingular and projective, just like .), is an isomorphism.哥哥喷涌而出 发表于 2025-3-23 03:58:31
Cohomology of Current Lie AlgebrasLet .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ⊂ Y ..(.) ..保留 发表于 2025-3-23 08:02:32
http://reply.papertrans.cn/16/1528/152708/152708_10.png