拒绝 发表于 2025-3-23 12:47:16
http://reply.papertrans.cn/16/1527/152685/152685_11.pngArresting 发表于 2025-3-23 14:22:03
http://reply.papertrans.cn/16/1527/152685/152685_12.png狼群 发表于 2025-3-23 19:51:00
http://reply.papertrans.cn/16/1527/152685/152685_13.pngTexture 发表于 2025-3-24 01:06:40
Class Field Theory,There are two main problems in the theory of algebraic number fields: On the one hand the description of the arithmetical properties of a given number field and on the other hand the description of number fields with given arithmetical properties.amputation 发表于 2025-3-24 02:54:27
http://reply.papertrans.cn/16/1527/152685/152685_15.png分离 发表于 2025-3-24 07:25:08
Abelian Fields,The finite abelian extensions of . are called (absolute) .. So far they appeared as examples for more general theorems. In this chapter we consider further problems about number fields mostly restricted to abelian fields because the theory is much more complete in this restriction as in a more general setting.Felicitous 发表于 2025-3-24 14:17:17
Jörg Polakiewicz,Julia Katharina Kirchmayrmbers to algebraic numbers. Gauss considered the ring . of all numbers of the form . with . and showed that . is a ring with unique factorization in prime elements (see §2.1). He introduced these numbers for the development of his theory of biquadratic residues. Another motivation for the study of tduplicate 发表于 2025-3-24 17:41:11
http://reply.papertrans.cn/16/1527/152685/152685_18.pngextinct 发表于 2025-3-24 20:16:05
https://doi.org/10.1007/978-3-642-58095-6Algebraische Zahlentheorie; Galois Kohomologie; Klassenkörpertheorie; algebra; algebraic number theory; cindigenous 发表于 2025-3-25 03:04:46
978-3-540-63003-6Springer-Verlag Berlin Heidelberg 1997