minutia
发表于 2025-3-21 19:44:50
书目名称Algebraic K-Theory and Its Applications影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0152651<br><br> <br><br>书目名称Algebraic K-Theory and Its Applications读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0152651<br><br> <br><br>
间接
发表于 2025-3-21 21:39:07
http://reply.papertrans.cn/16/1527/152651/152651_2.png
anaerobic
发表于 2025-3-22 00:45:02
http://reply.papertrans.cn/16/1527/152651/152651_3.png
姑姑在炫耀
发表于 2025-3-22 06:53:47
http://reply.papertrans.cn/16/1527/152651/152651_4.png
misshapen
发表于 2025-3-22 11:54:21
https://doi.org/10.1007/978-3-031-32879-4ill seem a comforting retreat to more familiar territory. However, we will need to refer to the homology of a group, at least in order to speak of .. Since group homology will be needed in a more serious way in the next chapter anyway, we provide a brief introduction to the subject later in this sec
Tincture
发表于 2025-3-22 14:04:43
http://reply.papertrans.cn/16/1527/152651/152651_6.png
和平主义者
发表于 2025-3-22 18:44:20
https://doi.org/10.1007/978-3-031-32879-4iewed as the “linearization” of .-theory, in the same sense in which the matrix ring .(.) is the “linearization” of the general linear group .(.). For motivation, it is useful to think of the case where the ring . is ℝ or ℂ. Then .(., .)is a Lie group, and the space .(., .). giving rise to the highe
FLAG
发表于 2025-3-23 00:59:04
http://reply.papertrans.cn/16/1527/152651/152651_8.png
断言
发表于 2025-3-23 03:26:02
http://reply.papertrans.cn/16/1527/152651/152651_9.png
extemporaneous
发表于 2025-3-23 09:01:59
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152651.jpg