BULK
发表于 2025-3-21 19:43:31
书目名称Algebraic K-Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0152645<br><br> <br><br>书目名称Algebraic K-Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0152645<br><br> <br><br>
Discrete
发表于 2025-3-21 23:17:50
Ravikiran Vaidya,Vishal Dhamecha% aaaa!370C!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$underset{
aise0.3emhbox{$smash{scriptscriptstyle-}$}}{n} $$, and . are monotonic maps (i.e., maps .% MathType!MTEF!2!1!+-% feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqt
Criteria
发表于 2025-3-22 03:24:39
http://reply.papertrans.cn/16/1527/152645/152645_3.png
玷污
发表于 2025-3-22 05:43:56
The Classifying Space of a Small Category,% aaaa!370C!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$underset{
aise0.3emhbox{$smash{scriptscriptstyle-}$}}{n} $$, and . are monotonic maps (i.e., maps .% MathType!MTEF!2!1!+-% feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqt
giggle
发表于 2025-3-22 09:31:09
Algebraic K-Theory978-0-8176-4739-1Series ISSN 2197-1803 Series E-ISSN 2197-1811
脆弱么
发表于 2025-3-22 16:32:40
http://reply.papertrans.cn/16/1527/152645/152645_6.png
morale
发表于 2025-3-22 20:27:59
https://doi.org/10.1007/978-0-8176-4739-1Category theory; Dimension; Grad; K-theory; algebraic geometry; plus construction; topology
Eosinophils
发表于 2025-3-22 23:28:43
978-0-8176-4736-0Springer Science+Business Media New York 1996
自由职业者
发表于 2025-3-23 01:46:38
http://reply.papertrans.cn/16/1527/152645/152645_9.png
outrage
发表于 2025-3-23 07:07:22
Ravi Sundaram,Sorabh Gupta,Sanjay GuptaIf . is a ring, let P(.) denote the category of finitely generated projective (left) .-modules. This is a full subcategory of the Abelian category of left .-modules, so that P(.) is an exact category where all exact sequences are split. We will prove the following result, comparing the plus and . constructions, in Chapter 7.