草本植物 发表于 2025-3-23 12:51:49
Lecture Notes in Computer Science ., 1980), (Takhtadjian ., 1987), (Kupershmidt ., 1983) with a 2-cocycle, and sometimes having a gauge nature. These observations give rise to a deep group-theoretical interpretation of Poisson structures for many integrable dynamical systems of mathematical physics.synovitis 发表于 2025-3-23 17:17:23
http://reply.papertrans.cn/16/1527/152640/152640_12.png沉默 发表于 2025-3-23 20:24:53
Book 1998 given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact tha闲荡 发表于 2025-3-24 00:42:17
Dolors Costal,Ernest Teniente,Toni Urpítrary Hamiltonian systems on .*(.) with .-invariant Hamiltonians are integrable within the class of Noether integrals (see Section 1 for definition). It is known that all symmetric spaces . of semi-simple groups . possess this property (see (Timm, 1988), (Mishchenko, 1982), (Mykytiuk, 1983) and (Ii,hypnotic 发表于 2025-3-24 04:07:02
http://reply.papertrans.cn/16/1527/152640/152640_15.png我不明白 发表于 2025-3-24 08:34:49
http://reply.papertrans.cn/16/1527/152640/152640_16.pngopportune 发表于 2025-3-24 11:37:25
http://reply.papertrans.cn/16/1527/152640/152640_17.pngmaroon 发表于 2025-3-24 16:25:54
http://reply.papertrans.cn/16/1527/152640/152640_18.png一再遛 发表于 2025-3-24 22:29:24
https://doi.org/10.1007/978-94-011-4994-5Algebra; Lie-Algebra; differential equation; differential geometry; dynamical systems; dynamics; dynamischsynchronous 发表于 2025-3-25 01:52:38
http://reply.papertrans.cn/16/1527/152640/152640_20.png