草本植物 发表于 2025-3-23 12:51:49

Lecture Notes in Computer Science ., 1980), (Takhtadjian ., 1987), (Kupershmidt ., 1983) with a 2-cocycle, and sometimes having a gauge nature. These observations give rise to a deep group-theoretical interpretation of Poisson structures for many integrable dynamical systems of mathematical physics.

synovitis 发表于 2025-3-23 17:17:23

http://reply.papertrans.cn/16/1527/152640/152640_12.png

沉默 发表于 2025-3-23 20:24:53

Book 1998 given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact tha

闲荡 发表于 2025-3-24 00:42:17

Dolors Costal,Ernest Teniente,Toni Urpítrary Hamiltonian systems on .*(.) with .-invariant Hamiltonians are integrable within the class of Noether integrals (see Section 1 for definition). It is known that all symmetric spaces . of semi-simple groups . possess this property (see (Timm, 1988), (Mishchenko, 1982), (Mykytiuk, 1983) and (Ii,

hypnotic 发表于 2025-3-24 04:07:02

http://reply.papertrans.cn/16/1527/152640/152640_15.png

我不明白 发表于 2025-3-24 08:34:49

http://reply.papertrans.cn/16/1527/152640/152640_16.png

opportune 发表于 2025-3-24 11:37:25

http://reply.papertrans.cn/16/1527/152640/152640_17.png

maroon 发表于 2025-3-24 16:25:54

http://reply.papertrans.cn/16/1527/152640/152640_18.png

一再遛 发表于 2025-3-24 22:29:24

https://doi.org/10.1007/978-94-011-4994-5Algebra; Lie-Algebra; differential equation; differential geometry; dynamical systems; dynamics; dynamisch

synchronous 发表于 2025-3-25 01:52:38

http://reply.papertrans.cn/16/1527/152640/152640_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds; Classical and Quantu Anatoliy K. Prykarpatsky,Ihor V. Mykytiuk Book 19