草本植物
发表于 2025-3-23 12:51:49
Lecture Notes in Computer Science ., 1980), (Takhtadjian ., 1987), (Kupershmidt ., 1983) with a 2-cocycle, and sometimes having a gauge nature. These observations give rise to a deep group-theoretical interpretation of Poisson structures for many integrable dynamical systems of mathematical physics.
synovitis
发表于 2025-3-23 17:17:23
http://reply.papertrans.cn/16/1527/152640/152640_12.png
沉默
发表于 2025-3-23 20:24:53
Book 1998 given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact tha
闲荡
发表于 2025-3-24 00:42:17
Dolors Costal,Ernest Teniente,Toni Urpítrary Hamiltonian systems on .*(.) with .-invariant Hamiltonians are integrable within the class of Noether integrals (see Section 1 for definition). It is known that all symmetric spaces . of semi-simple groups . possess this property (see (Timm, 1988), (Mishchenko, 1982), (Mykytiuk, 1983) and (Ii,
hypnotic
发表于 2025-3-24 04:07:02
http://reply.papertrans.cn/16/1527/152640/152640_15.png
我不明白
发表于 2025-3-24 08:34:49
http://reply.papertrans.cn/16/1527/152640/152640_16.png
opportune
发表于 2025-3-24 11:37:25
http://reply.papertrans.cn/16/1527/152640/152640_17.png
maroon
发表于 2025-3-24 16:25:54
http://reply.papertrans.cn/16/1527/152640/152640_18.png
一再遛
发表于 2025-3-24 22:29:24
https://doi.org/10.1007/978-94-011-4994-5Algebra; Lie-Algebra; differential equation; differential geometry; dynamical systems; dynamics; dynamisch
synchronous
发表于 2025-3-25 01:52:38
http://reply.papertrans.cn/16/1527/152640/152640_20.png