选民 发表于 2025-3-21 16:25:37
书目名称Algebraic Geometry for Beginners影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0152620<br><br> <br><br>书目名称Algebraic Geometry for Beginners读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0152620<br><br> <br><br>我怕被刺穿 发表于 2025-3-21 20:41:19
http://reply.papertrans.cn/16/1527/152620/152620_2.png越自我 发表于 2025-3-22 02:40:29
http://reply.papertrans.cn/16/1527/152620/152620_3.png军火 发表于 2025-3-22 04:58:24
http://reply.papertrans.cn/16/1527/152620/152620_4.pngfaculty 发表于 2025-3-22 08:50:57
http://reply.papertrans.cn/16/1527/152620/152620_5.pngMAIZE 发表于 2025-3-22 16:04:02
https://doi.org/10.1007/978-3-031-20286-5oose from and one finds it difficult where to start. Literature on curves is very rich and abundant, in scope and volume, yet it is never complete as the story of curves spreads over 2000 years. The understanding of and penetration into the mysteries of geometry became a rewarding and lasting experi摇曳的微光 发表于 2025-3-22 20:15:45
http://reply.papertrans.cn/16/1527/152620/152620_7.pngDALLY 发表于 2025-3-22 22:34:32
http://reply.papertrans.cn/16/1527/152620/152620_8.pngTemporal-Lobe 发表于 2025-3-23 04:38:14
http://reply.papertrans.cn/16/1527/152620/152620_9.pnggruelling 发表于 2025-3-23 09:30:18
https://doi.org/10.1007/978-3-031-20286-5Let . : . → . be a morphism of (quasi-projective) varieties. For . ∈ ., the closed subset of ., namely,. is called the . of . over .. It is a closed algebraic subset of ., equipped with the canonical reduced structure (22.3).