Panther 发表于 2025-3-26 22:19:59

http://reply.papertrans.cn/16/1527/152602/152602_31.png

墙壁 发表于 2025-3-27 01:14:15

0932-7134 following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe?cients g ? k), then we have i i 1 n V(f ,. . . ,f)= V(g,f ,. . . ,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k gene978-3-8348-9722-0Series ISSN 0932-7134 Series E-ISSN 2512-7039

文艺 发表于 2025-3-27 05:46:16

http://reply.papertrans.cn/16/1527/152602/152602_33.png

冲击力 发表于 2025-3-27 11:11:04

0932-7134 f systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,and

哺乳动物 发表于 2025-3-27 15:45:59

http://reply.papertrans.cn/16/1527/152602/152602_35.png

不如屎壳郎 发表于 2025-3-27 20:44:18

http://reply.papertrans.cn/16/1527/152602/152602_36.png

Desert 发表于 2025-3-28 00:08:14

Integration and Demonstrations, simple situations, the converse to this statement is true, see Proposition 14.14, Theorem 14.32 and Theorem 14.126 below. One could say that flatness is the correct generalization of this naive point of view to the general case.

committed 发表于 2025-3-28 04:30:03

http://reply.papertrans.cn/16/1527/152602/152602_38.png

友好 发表于 2025-3-28 10:02:48

http://reply.papertrans.cn/16/1527/152602/152602_39.png

jumble 发表于 2025-3-28 11:16:53

Flat morphisms and dimension, simple situations, the converse to this statement is true, see Proposition 14.14, Theorem 14.32 and Theorem 14.126 below. One could say that flatness is the correct generalization of this naive point of view to the general case.
页: 1 2 3 [4] 5 6
查看完整版本: Titlebook: Algebraic Geometry; Part I: Schemes. Wit Ulrich Görtz,Torsten Wedhorn Textbook 20101st edition Vieweg+Teubner Verlag | Springer Fachmedien