Panther 发表于 2025-3-26 22:19:59
http://reply.papertrans.cn/16/1527/152602/152602_31.png墙壁 发表于 2025-3-27 01:14:15
0932-7134 following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe?cients g ? k), then we have i i 1 n V(f ,. . . ,f)= V(g,f ,. . . ,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k gene978-3-8348-9722-0Series ISSN 0932-7134 Series E-ISSN 2512-7039文艺 发表于 2025-3-27 05:46:16
http://reply.papertrans.cn/16/1527/152602/152602_33.png冲击力 发表于 2025-3-27 11:11:04
0932-7134 f systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,and哺乳动物 发表于 2025-3-27 15:45:59
http://reply.papertrans.cn/16/1527/152602/152602_35.png不如屎壳郎 发表于 2025-3-27 20:44:18
http://reply.papertrans.cn/16/1527/152602/152602_36.pngDesert 发表于 2025-3-28 00:08:14
Integration and Demonstrations, simple situations, the converse to this statement is true, see Proposition 14.14, Theorem 14.32 and Theorem 14.126 below. One could say that flatness is the correct generalization of this naive point of view to the general case.committed 发表于 2025-3-28 04:30:03
http://reply.papertrans.cn/16/1527/152602/152602_38.png友好 发表于 2025-3-28 10:02:48
http://reply.papertrans.cn/16/1527/152602/152602_39.pngjumble 发表于 2025-3-28 11:16:53
Flat morphisms and dimension, simple situations, the converse to this statement is true, see Proposition 14.14, Theorem 14.32 and Theorem 14.126 below. One could say that flatness is the correct generalization of this naive point of view to the general case.