外表 发表于 2025-3-21 16:07:11

书目名称Algebraic Analysis of Differential Equations影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0152544<br><br>        <br><br>书目名称Algebraic Analysis of Differential Equations读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0152544<br><br>        <br><br>

无法解释 发表于 2025-3-21 21:45:22

http://reply.papertrans.cn/16/1526/152544/152544_2.png

Bureaucracy 发表于 2025-3-22 03:59:05

Virtual turning points — A gift of microlocal analysis to the exact WKB analysists importance in the analysis of the Noumi-Yamada system (a particular higher order Painlevé equation) and a concrete recipe for locating them. Examples given here make it manifest that virtual turning points are indispensable in WKB analysis of higher order linear ordinary differential equations wi

诗集 发表于 2025-3-22 07:23:49

http://reply.papertrans.cn/16/1526/152544/152544_4.png

CRP743 发表于 2025-3-22 12:44:11

Nonlinear Stokes phenomena in first or second order differential equations 0 (say, . = (−1).). If . = 1 we assume .(0, ·) is meromorphic and nonlinear. If . = 2, we assume .(0, ·) is analytic except for isolated singularities, and also that ∫. |.(.)|..|.| < ∞ along some path avoiding the zeros and singularities of ., where .(.) = ∫..(0, .).. Let .. = {z: |.| > . > 0, arg(

性别 发表于 2025-3-22 14:15:26

http://reply.papertrans.cn/16/1526/152544/152544_6.png

Cumulus 发表于 2025-3-22 20:30:22

http://reply.papertrans.cn/16/1526/152544/152544_7.png

财政 发表于 2025-3-23 00:33:12

http://reply.papertrans.cn/16/1526/152544/152544_8.png

向外 发表于 2025-3-23 05:06:21

http://reply.papertrans.cn/16/1526/152544/152544_9.png

确定无疑 发表于 2025-3-23 08:07:46

https://doi.org/10.1007/978-3-319-06242-6the Borel transform of its asymptotic expansion, ., a nonlinear analog of Stokes phenomena. If . = 1 and . is a nonlinear polynomial with .(., 0) ≢ 0 a similar conclusion holds even if .(0, ·) is linear. This follows from the property that if . is superexponentially small along ℝ. and analytic in ..
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Algebraic Analysis of Differential Equations; from Microlocal Anal Takashi Aoki,Hideyuki Majima,Nobuyuki Tose Book 2008 Springer-Verlag Tok