外表 发表于 2025-3-21 16:07:11
书目名称Algebraic Analysis of Differential Equations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0152544<br><br> <br><br>书目名称Algebraic Analysis of Differential Equations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0152544<br><br> <br><br>无法解释 发表于 2025-3-21 21:45:22
http://reply.papertrans.cn/16/1526/152544/152544_2.pngBureaucracy 发表于 2025-3-22 03:59:05
Virtual turning points — A gift of microlocal analysis to the exact WKB analysists importance in the analysis of the Noumi-Yamada system (a particular higher order Painlevé equation) and a concrete recipe for locating them. Examples given here make it manifest that virtual turning points are indispensable in WKB analysis of higher order linear ordinary differential equations wi诗集 发表于 2025-3-22 07:23:49
http://reply.papertrans.cn/16/1526/152544/152544_4.pngCRP743 发表于 2025-3-22 12:44:11
Nonlinear Stokes phenomena in first or second order differential equations 0 (say, . = (−1).). If . = 1 we assume .(0, ·) is meromorphic and nonlinear. If . = 2, we assume .(0, ·) is analytic except for isolated singularities, and also that ∫. |.(.)|..|.| < ∞ along some path avoiding the zeros and singularities of ., where .(.) = ∫..(0, .).. Let .. = {z: |.| > . > 0, arg(性别 发表于 2025-3-22 14:15:26
http://reply.papertrans.cn/16/1526/152544/152544_6.pngCumulus 发表于 2025-3-22 20:30:22
http://reply.papertrans.cn/16/1526/152544/152544_7.png财政 发表于 2025-3-23 00:33:12
http://reply.papertrans.cn/16/1526/152544/152544_8.png向外 发表于 2025-3-23 05:06:21
http://reply.papertrans.cn/16/1526/152544/152544_9.png确定无疑 发表于 2025-3-23 08:07:46
https://doi.org/10.1007/978-3-319-06242-6the Borel transform of its asymptotic expansion, ., a nonlinear analog of Stokes phenomena. If . = 1 and . is a nonlinear polynomial with .(., 0) ≢ 0 a similar conclusion holds even if .(0, ·) is linear. This follows from the property that if . is superexponentially small along ℝ. and analytic in ..