Maudlin 发表于 2025-3-21 17:31:11
书目名称Algebra and Galois Theories影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0152487<br><br> <br><br>书目名称Algebra and Galois Theories读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0152487<br><br> <br><br>大方不好 发表于 2025-3-21 22:03:19
http://reply.papertrans.cn/16/1525/152487/152487_2.png扔掉掐死你 发表于 2025-3-22 01:27:24
,Dessins d’Enfants,nly embeds in the product of ., as . runs through the set of irreducible polynomials of ., but this set is itself not easy to understand if only because there is no natural way of numbering the roots of a polynomial.上下连贯 发表于 2025-3-22 06:55:32
http://reply.papertrans.cn/16/1525/152487/152487_4.pngBUOY 发表于 2025-3-22 09:42:47
Régine Douady,Adrien DouadyThis book aims to transfer geometric intuition to the algebraic framework of Galois theory.Gives a parallel presentation of Galois theory and the theory of covering spaces and highlights this similariPerennial长期的 发表于 2025-3-22 13:42:25
http://image.papertrans.cn/a/image/152487.jpg蛰伏 发表于 2025-3-22 18:32:55
http://reply.papertrans.cn/16/1525/152487/152487_7.png朴素 发表于 2025-3-23 00:32:18
https://doi.org/10.1007/978-3-030-45537-8 on .. If . is a compact connected Riemann surface over . (i.e. equipped with a non constant morphism .), then the field . is a finite extension of .. Moreover, there is a finite subset . of . such that . is a connected finite cover of .. The functors . and . give an equivalence between the category别名 发表于 2025-3-23 04:02:33
http://reply.papertrans.cn/16/1525/152487/152487_9.pngIngredient 发表于 2025-3-23 06:53:30
http://reply.papertrans.cn/16/1525/152487/152487_10.png