外向者 发表于 2025-3-25 05:30:01

https://doi.org/10.1007/978-3-658-32050-8rem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of Köthe-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.

魔鬼在游行 发表于 2025-3-25 10:08:18

http://reply.papertrans.cn/16/1525/152474/152474_22.png

–scent 发表于 2025-3-25 13:48:37

Modules of Finite Length and their Endomorphism Ringsrem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of Köthe-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.

Osmosis 发表于 2025-3-25 19:03:39

Semiprimitive Rings, Semiprime Rings, and the Nil Radicalrimitive) rings 26.6 and 26.13. The (McCoy) prime radical of a ring is defined to be the intersection of the prime ideals, and is characterized as the set of all strongly nilpotent elements of . (theorem of Levitzki 26.5). When . is commutative, this is just the set of nilpotent elements.

HUSH 发表于 2025-3-25 21:00:12

Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/a/image/152474.jpg

消灭 发表于 2025-3-26 00:44:39

http://reply.papertrans.cn/16/1525/152474/152474_26.png

训诫 发表于 2025-3-26 05:48:27

Einleitung Datenschutz und Digitalisierung,devoted to ring theory. A few brief indications of the overlap with Jacobson might be helpful. The revised edition of Jacobson contained three appendices, which overlaps with us in the main Goldie-Lesieur-Croisot theorem (Chapter 9), the Faith-Utumi theorem (Chapter 10), the Wedderburn Fac

多产鱼 发表于 2025-3-26 09:48:55

http://reply.papertrans.cn/16/1525/152474/152474_28.png

标准 发表于 2025-3-26 16:40:13

http://reply.papertrans.cn/16/1525/152474/152474_29.png

CRUDE 发表于 2025-3-26 19:20:48

http://reply.papertrans.cn/16/1525/152474/152474_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Algebra II Ring Theory; Vol. 2: Ring Theory Carl Faith Book 1976 Springer-Verlag Berlin Heidelberg 1976 Ring.algebra