Esophagitis 发表于 2025-3-28 14:42:36

Somaclonal Variation in Date Palm of the Picard group Pic (mod-.) of all .-linear auto-equivalences of mod-. for an arbitrary algebra ., and also (in Exercises for Chapter 12, and in Chapter 32) of the Brauer group of a commutative ring .

GREG 发表于 2025-3-28 20:19:27

A. El Hadrami,F. Daayf,I. El Hadramitheorems for a finite dimensional algebras . over an algebraically closed field . If . has no nilpotent ideals ≠ 0, then . is a finite product of total matrix algebras over . In this case, the set . (.) of degrees of the total matrix algebras is a complete set of invariants of . Thus, 13.7 two finit

Alpha-Cells 发表于 2025-3-29 01:11:36

http://reply.papertrans.cn/16/1525/152423/152423_43.png

心胸开阔 发表于 2025-3-29 05:25:15

Noetherian Semiprime Ringsand sufficient for a ring . to possess a classical quotient ring: If ., . ∈ ., and if . is regular, then there exist .., .. ∈ ., .. regular, such that ..= .. (see 9.1). If . is commutative, this condition is automatic, and if . is a domain, this is the Ore condition.

无能力 发表于 2025-3-29 10:10:41

http://reply.papertrans.cn/16/1525/152423/152423_45.png

推测 发表于 2025-3-29 15:23:42

Morita Theorems and the Picard Group of the Picard group Pic (mod-.) of all .-linear auto-equivalences of mod-. for an arbitrary algebra ., and also (in Exercises for Chapter 12, and in Chapter 32) of the Brauer group of a commutative ring .

雀斑 发表于 2025-3-29 17:25:04

http://reply.papertrans.cn/16/1525/152423/152423_47.png

VOK 发表于 2025-3-29 19:58:32

Big Data und die Frage nach der AnerkennungThe concepts introduced and explored in this chapter are so fundamental that scarcely any of them can be dispensed with hereafter.

强有力 发表于 2025-3-29 23:53:22

http://reply.papertrans.cn/16/1525/152423/152423_49.png

Anecdote 发表于 2025-3-30 07:51:34

https://doi.org/10.1007/978-94-007-1318-5Grothendieck introduced the notation for abelian categories which follows:
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Algebra; Rings, Modules and C Carl Faith Book 1973 Springer-Verlag, Berlin · Heidelberg 1973 Autodesk Maya.Coproduct.Kategorie.Modul.algebr