预兆前 发表于 2025-3-21 17:01:31

书目名称Advances on Smart and Soft Computing影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0150324<br><br>        <br><br>书目名称Advances on Smart and Soft Computing读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0150324<br><br>        <br><br>

BARK 发表于 2025-3-22 00:06:37

Evaluation of Several Artificial Intelligence and Machine Learning Algorithms for Image Classificationg with deep learning methods (CNN and transfer learning). Data augmentation and fine-tuning techniques are explored to handle the overfitting problem. Conducted experiment results show the effectiveness of transfer learning with data augmentation and fine-tuning using the VGG16 network as the precision reaches 89%.

insular 发表于 2025-3-22 01:06:02

http://reply.papertrans.cn/16/1504/150324/150324_3.png

murmur 发表于 2025-3-22 08:12:45

http://reply.papertrans.cn/16/1504/150324/150324_4.png

Implicit 发表于 2025-3-22 11:52:06

http://reply.papertrans.cn/16/1504/150324/150324_5.png

即席演说 发表于 2025-3-22 13:58:57

Feature Selection and Classification Using CatBoost Method for Improving the Performance of Predictithe ensemble methods, random forest, XGBoost and CatBoost were used to find the most important features for predicting PD. The effect of these features with different thresholds was investigated in order to obtain the best performance for predicting PD. The results showed that CatBoost method obtained the best results.

infelicitous 发表于 2025-3-22 18:50:18

http://reply.papertrans.cn/16/1504/150324/150324_7.png

Melatonin 发表于 2025-3-22 21:42:15

http://reply.papertrans.cn/16/1504/150324/150324_8.png

deceive 发表于 2025-3-23 02:34:45

http://reply.papertrans.cn/16/1504/150324/150324_9.png

蜈蚣 发表于 2025-3-23 08:18:05

http://reply.papertrans.cn/16/1504/150324/150324_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Advances on Smart and Soft Computing; Proceedings of ICAC Faisal Saeed,Tawfik Al-Hadhrami,Errais Mohammed Conference proceedings 2021 The