deteriorate 发表于 2025-3-21 19:55:02
书目名称Advances in Visual Computing影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0150123<br><br> <br><br>书目名称Advances in Visual Computing读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0150123<br><br> <br><br>VERT 发表于 2025-3-21 22:59:17
Deep Learning Based GABA Edited-MRS Signal Reconstructiondata from real GABA-edited ground truths. Our model achieves a 95% decrease in Mean Squared Error (MSE), a 70% decrease in Linewidth, a 450% increase in Signal to Noise Ratio (SNR), and a 42% increase in Peak Shape Score compared to the current existing method on the test set. We also illustrate our诱惑 发表于 2025-3-22 03:04:43
http://reply.papertrans.cn/16/1502/150123/150123_3.png字形刻痕 发表于 2025-3-22 07:12:00
ReFit: A Framework for Refinement of Weakly Supervised Semantic Segmentation Using Object Border Fit be used to construct a boundary map, which enables . to predict object locations with sharper boundaries. By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging. The framework is open-source, to ensure that ou虚弱的神经 发表于 2025-3-22 08:54:11
A Data-Centric Approach for Pectoral Muscle Deep Learning Segmentation Enhancements in Mammography Inhance the accuracy of the deep-learning-based mammography segmentation model. In the first stage, we introduce a shape-based label analysis to automatically identify pectoral muscle labels with possible inconsistencies for a posterior manual review and correction. Then, in the second stage, we down激励 发表于 2025-3-22 16:14:29
http://reply.papertrans.cn/16/1502/150123/150123_6.png合并 发表于 2025-3-22 18:40:16
http://reply.papertrans.cn/16/1502/150123/150123_7.pnginfinite 发表于 2025-3-22 23:25:57
http://reply.papertrans.cn/16/1502/150123/150123_8.png大气层 发表于 2025-3-23 03:44:26
http://reply.papertrans.cn/16/1502/150123/150123_9.png高射炮 发表于 2025-3-23 09:37:07
http://reply.papertrans.cn/16/1502/150123/150123_10.png