lexicographer 发表于 2025-3-21 20:06:13

书目名称Advances in Swarm Intelligence影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0149948<br><br>        <br><br>书目名称Advances in Swarm Intelligence读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0149948<br><br>        <br><br>

saphenous-vein 发表于 2025-3-21 20:35:24

http://reply.papertrans.cn/15/1500/149948/149948_2.png

deficiency 发表于 2025-3-22 01:05:31

http://reply.papertrans.cn/15/1500/149948/149948_3.png

Limerick 发表于 2025-3-22 06:58:06

http://reply.papertrans.cn/15/1500/149948/149948_4.png

时代 发表于 2025-3-22 12:06:03

Conception optimale de structures data, and then the particle swarm optimization algorithm is applied for piecewise area division and parameter optimization of the model. Simulation result shows that compared with traditional inversion method, better practicability and the higher significant wave height inversion precision are obtained by the proposed method.

津贴 发表于 2025-3-22 16:37:34

,Introduction à l’optimisation de formes,e, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.

Indolent 发表于 2025-3-22 17:22:53

http://reply.papertrans.cn/15/1500/149948/149948_7.png

小淡水鱼 发表于 2025-3-23 00:28:47

Cask Theory Based Parameter Optimization for Particle Swarm Optimizationt can be used to search the tuned parameters such as inertia weight ., acceleration coefficients c. and c., and so on. This method considers the cask theory to achieve a better optimization performance. Several famous benchmarks were used to validate the proposed method and the simulation results showed the efficiency of the proposed method.

Scleroderma 发表于 2025-3-23 03:54:16

A Piecewise Linearization Method of Significant Wave Height Based on Particle Swarm Optimization data, and then the particle swarm optimization algorithm is applied for piecewise area division and parameter optimization of the model. Simulation result shows that compared with traditional inversion method, better practicability and the higher significant wave height inversion precision are obtained by the proposed method.

Gobble 发表于 2025-3-23 07:59:32

Parameter Identification of RVM Runoff Forecasting Model Based on Improved Particle Swarm Optimizatie, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Advances in Swarm Intelligence; 4th International Co Ying Tan,Yuhui Shi,Hongwei Mo Conference proceedings 2013 Springer-Verlag Berlin Heide