Magnanimous
发表于 2025-3-21 19:05:53
书目名称Advances in Summability and Approximation Theory影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0149906<br><br> <br><br>书目名称Advances in Summability and Approximation Theory读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0149906<br><br> <br><br>
反对
发表于 2025-3-21 21:21:27
http://reply.papertrans.cn/15/1500/149906/149906_2.png
针叶类的树
发表于 2025-3-22 02:15:28
http://reply.papertrans.cn/15/1500/149906/149906_3.png
heterogeneous
发表于 2025-3-22 05:03:08
https://doi.org/10.1007/978-981-13-3077-3Statistical convergence; Sequence spaces; Positive linear operators; Bernstein polynomial; Baskakov poly
aristocracy
发表于 2025-3-22 12:29:31
Springer Nature Singapore Pte Ltd. 2018
装勇敢地做
发表于 2025-3-22 16:55:12
Efficient Control of Selective Simulations,In this chapter, we discuss the general convergence methods in orthogonal metric space. Also we study the applications of fixed point theorems to obtain the existence of a solution of differential and integral equations in orthogonal metric spaces.
induct
发表于 2025-3-22 20:52:24
https://doi.org/10.1007/978-3-642-93159-8In this paper, we establish the existence of solutions of infinite systems of second-order differential equations in Banach sequence spaces by using techniques associated with measures of noncompactness in a combination of Meir–Keeler condensing operators. We illustrate our results with the help of some examples.
补角
发表于 2025-3-22 22:34:51
Kathrin Schier,Simone Fischer-HübnerIn the present paper, we introduce the Chlodowsky variant of (., .) Szász–Mirakyan–Stancu operators on the unbounded domain which is a generalization of (., .) Szász–Mirakyan operators. We have also derived its Korovkin-type approximation properties and rate of convergence.
Fibrillation
发表于 2025-3-23 02:54:03
http://reply.papertrans.cn/15/1500/149906/149906_9.png
frugal
发表于 2025-3-23 07:38:53
http://reply.papertrans.cn/15/1500/149906/149906_10.png