FERN 发表于 2025-3-21 17:59:28
书目名称Advances in Ring Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0149590<br><br> <br><br>书目名称Advances in Ring Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0149590<br><br> <br><br>易于 发表于 2025-3-21 22:07:06
Minimal Cogenerators Over Osofsky and Camillo Rings,e right Osofsky. We call these right Camillo rings, and show that commutative SISI rings of Vámos , and locally perfect commutative rings, in fact, any 0-dimensional ring, among others, are Camillo, hence Osofsky rings.paltry 发表于 2025-3-22 03:10:19
,Co— Versus Contravariant Finiteness of Categories of Representations, of .. (Λ-mod). An example is given where this condition fails, the failure being, however, curable via a sequence of one-point extensions. In particular, this example demonstrates that curing failure of contravariant finiteness of .. (Λ-mod) usually involves a tradeoff with respect to other desirable qualities of the algebra.表否定 发表于 2025-3-22 07:23:43
http://reply.papertrans.cn/15/1496/149590/149590_4.png罐里有戒指 发表于 2025-3-22 10:17:11
http://reply.papertrans.cn/15/1496/149590/149590_5.png反馈 发表于 2025-3-22 15:36:00
https://doi.org/10.1007/978-3-031-42697-1e right Osofsky. We call these right Camillo rings, and show that commutative SISI rings of Vámos , and locally perfect commutative rings, in fact, any 0-dimensional ring, among others, are Camillo, hence Osofsky rings.Ptsd429 发表于 2025-3-22 19:58:38
http://reply.papertrans.cn/15/1496/149590/149590_7.pnggenuine 发表于 2025-3-23 01:03:47
Lecture Notes in Computer Scienceayer condition when . is the coefficient ring. In case . is a centralized extension, our characterization is applied to show that the strong second layer condition for . amounts to a diluted version of .-separation for . whenever . is .-separated.Flavouring 发表于 2025-3-23 03:45:28
http://reply.papertrans.cn/15/1496/149590/149590_9.pngAsymptomatic 发表于 2025-3-23 06:47:32
http://reply.papertrans.cn/15/1496/149590/149590_10.png