远见 发表于 2025-3-21 17:28:46

书目名称Advances in Knowledge Discovery and Data Mining影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0148645<br><br>        <br><br>书目名称Advances in Knowledge Discovery and Data Mining读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0148645<br><br>        <br><br>

激怒某人 发表于 2025-3-22 00:08:43

Ranking Enhanced Supervised Contrastive Learning for Regressionchweißung lassen sich nämlich alle Werkstoffe, die im knetbaren Zustand verschweißbar sind, unter Anwendung von Druck (Preß­ schweißverfahren) verschweißen. Darüber hinaus können durch Widerstands­ schweißverf‘}hren verschiedenste Metalle miteinander verbunden werden, die aus metallurgischen Gründen durch die978-3-663-06700-9978-3-663-07613-1

Malaise 发表于 2025-3-22 03:00:29

http://reply.papertrans.cn/15/1487/148645/148645_3.png

Psa617 发表于 2025-3-22 06:50:20

Relation-Aware Label Smoothing for Self-KD. . . . . . . . . . . . . . . . . . . . . . 34 1. 5. 1 Die handelsrechtlichen Vorschriften im Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1. 5. 2 Bilanzierung nach dem Handelsrecht. . . . . . . 35 1. 5. 3 Bewertung nach dem Handelsrecht. . . . . . . . . 45 1. 6 Ansatz- und Bewertungsv978-3-409-96064-9978-3-663-12887-8

哀悼 发表于 2025-3-22 12:22:32

http://reply.papertrans.cn/15/1487/148645/148645_5.png

运动性 发表于 2025-3-22 13:26:18

http://reply.papertrans.cn/15/1487/148645/148645_6.png

证实 发表于 2025-3-22 17:10:42

Edward H. Cooper,Geoffrey R. Gilesr method in image regression tasks on four real-world datasets with various interests, including meteorological, medical and human facial data. Experimental results of our method show that representations with better ranking are learned and improvements are made over other baselines in terms of RMSE

compose 发表于 2025-3-23 01:09:53

Liver resection for malignant disease, limitation, this study proposes a method that designs a graph structure learner, which infers the structure of interference by imposing an .-norm regularization on the number of potential connections. The inferred structure is then fed into a graph convolution network to model interference received

来这真柔软 发表于 2025-3-23 04:59:39

Jerome J. Decosse,Paul Sherlockhird objective ensures that the anchors do not collapse to zero. Furthermore, we develop a more efficient two-stage retrieval system by harnessing the learned class anchors during the first stage of the retrieval process, eliminating the need of comparing the query with every image in the database.

Alienated 发表于 2025-3-23 08:59:45

Mysteries of the Uterine Cavityal Bipartite Graph Attention Network (STBGAT) that allows explicit modeling of past information propagation among nodes. Further, we present a heterogeneous cross-attention mechanism in a transformer to compute finer-grained feature-wise attention distribution enabling the model to capture richer an
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Advances in Knowledge Discovery and Data Mining; 28th Pacific-Asia Co De-Nian Yang,Xing Xie,Jerry Chun-Wei Lin Conference proceedings 2024