LEVEE 发表于 2025-3-21 18:46:56
书目名称Advances in Cryptology -- ASIACRYPT 2012影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0147479<br><br> <br><br>书目名称Advances in Cryptology -- ASIACRYPT 2012读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0147479<br><br> <br><br>Free-Radical 发表于 2025-3-21 20:36:54
Xiaoyun Wang,Kazue SakoUp-to-date results.Fast-track conference proceedings.State-of-the-art researchFibrin 发表于 2025-3-22 03:53:59
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/147479.jpg异端邪说下 发表于 2025-3-22 07:21:46
https://doi.org/10.1007/978-3-642-34961-4collision attack; elliptic curve cryptography; homomorphic signatures; pairing-based cryptosystems; secuAbnormal 发表于 2025-3-22 12:41:22
http://reply.papertrans.cn/15/1475/147479/147479_5.pngLimpid 发表于 2025-3-22 14:43:44
https://doi.org/10.1007/978-3-322-83133-0merous applications in the construction of cryptographic systems. To this day many problems can only be solved using pairings. A few examples include collusion-resistant broadcast encryption and traitor tracing with short keys, 3-way Diffie-Hellman, and short signatures..In this talk we survey some使高兴 发表于 2025-3-22 20:00:19
https://doi.org/10.1007/978-3-322-83133-0, Rogers and many others still active today. It is one of the most important cornerstones of Geometry of Numbers, a classic branch of Number Theory. During recent decades, this pure mathematical concept has achieved remarkable applications in Cryptography, in particular its algorithm approaches. TheClimate 发表于 2025-3-22 23:15:35
http://reply.papertrans.cn/15/1475/147479/147479_8.pngUTTER 发表于 2025-3-23 03:59:23
https://doi.org/10.1007/978-3-322-83133-0c assumptions for schemes with special structure that are used as a basis of other cryptographic protocols and applications. We demonstrate the power of this framework by proving security under static assumptions for close variants of pre-existing schemes: the LRSW-based Camenisch-Lysyanskaya signat圆木可阻碍 发表于 2025-3-23 09:26:09
http://reply.papertrans.cn/15/1475/147479/147479_10.png