母牛胆小鬼 发表于 2025-3-21 17:40:37
书目名称Advances in Computer Algebra影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0147193<br><br> <br><br>书目名称Advances in Computer Algebra读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0147193<br><br> <br><br>evince 发表于 2025-3-21 20:34:51
http://reply.papertrans.cn/15/1472/147193/147193_2.pngInterdict 发表于 2025-3-22 02:17:12
http://reply.papertrans.cn/15/1472/147193/147193_3.png冲击力 发表于 2025-3-22 05:16:39
Paloma Fernández Pérez,Mauricio Matus been a fundamental algorithm for rational summation. In 2014, Chen and Singer have generalized Abramov’s algorithm to the case of rational functions in two (.-)discrete variables. In this paper we solve the remaining three mixed cases, which completes our recent project on bivariate extensions of A身体萌芽 发表于 2025-3-22 10:27:04
http://reply.papertrans.cn/15/1472/147193/147193_5.png极小 发表于 2025-3-22 14:46:52
Lingping Kong,Jeng-Shyang Pan,Václav Snášelrmonic numbers, hypergeometric products, .-hypergeometric products or their mixed versions. These linear systems are formulated in the setting of .-extensions and our goal is to find a denominator bound (also known as universal denominator) for the solutions; i.e., a non-zero polynomial . such that破布 发表于 2025-3-22 19:42:40
Lingping Kong,Jeng-Shyang Pan,Václav Snášelsums and products that can be expressed by transcendental ring extensions, but one can also handle algebraic products of the form . where . is a root of unity. In this article we supplement this summation theory substantially by the following building block. We provide new algorithms that representcompel 发表于 2025-3-23 01:17:50
http://reply.papertrans.cn/15/1472/147193/147193_8.pngHyperplasia 发表于 2025-3-23 05:18:11
Annabeth Aagaard,Wim Vanhaverbekers-Ramanujan functions as key players. After exemplifying basic notions of partition theory and modular functions in tutorial manner, relations of modular functions to .-holonomic functions and sequences are discussed. Special emphasis is put on supplementing the ideas presented with concrete comput参考书目 发表于 2025-3-23 06:58:01
http://reply.papertrans.cn/15/1472/147193/147193_10.png