暴行 发表于 2025-3-30 11:46:04
http://reply.papertrans.cn/15/1472/147131/147131_51.pngCongruous 发表于 2025-3-30 12:21:46
http://reply.papertrans.cn/15/1472/147131/147131_52.png别名 发表于 2025-3-30 17:19:28
http://reply.papertrans.cn/15/1472/147131/147131_53.pngDEFER 发表于 2025-3-30 21:09:31
http://reply.papertrans.cn/15/1472/147131/147131_54.pngTRAWL 发表于 2025-3-31 01:01:07
http://reply.papertrans.cn/15/1472/147131/147131_55.pngEncephalitis 发表于 2025-3-31 05:16:26
http://reply.papertrans.cn/15/1472/147131/147131_56.png一窝小鸟 发表于 2025-3-31 11:07:32
https://doi.org/10.1007/978-3-030-04497-8artificial intelligence; semantics; robotics; robots; signal processing; natural language processing syst吃掉 发表于 2025-3-31 15:56:59
http://reply.papertrans.cn/15/1472/147131/147131_58.pngchampaign 发表于 2025-3-31 17:47:17
http://reply.papertrans.cn/15/1472/147131/147131_59.pngGROG 发表于 2025-4-1 01:18:17
Jean C. M. Swinbank,Henry J. Heaney to predict lexical functions, we used various machine-learning techniques. The best F-measure of 0.65 was achieved for predicting Real1 by Gaussian Naïve Bayes using the left context without stopwords and word counts as features in vectors.