有灵感 发表于 2025-3-21 16:19:39
书目名称Advanced Topics in Computational Number Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0146364<br><br> <br><br>书目名称Advanced Topics in Computational Number Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0146364<br><br> <br><br>萤火虫 发表于 2025-3-21 21:23:59
http://reply.papertrans.cn/15/1464/146364/146364_2.png粗语 发表于 2025-3-22 03:35:18
https://doi.org/10.1007/978-3-662-48347-3In Chapter 3 we studied variants of class and unit groups, the ray class groups .(.), as well as the associated unit groups .(.) of units multiplicatively congruent to 1 modulo m. The fundamental application of these notions through the deep theorems of class field theory is the construction of Abelian extensions.Jogging 发表于 2025-3-22 07:20:31
http://reply.papertrans.cn/15/1464/146364/146364_4.pngMeander 发表于 2025-3-22 12:43:10
A. J. El Haj,K. Hampson,G. GogniatIn this appendix, we regroup and prove a number of results that we need.curriculum 发表于 2025-3-22 15:16:36
http://reply.papertrans.cn/15/1464/146364/146364_6.pngprostatitis 发表于 2025-3-22 21:02:41
https://doi.org/10.1007/978-1-4615-0767-3n practice, however, number fields are frequently not given in this way. One of the most common other ways is to give a number field as a . extension, in other words as an algebra . over some base field . that is not necessarily equal to √. necessarily equal to ℚ. In this case, the basic algebraic oCardioplegia 发表于 2025-3-22 23:23:22
Bioreaction Engineering Principles, , or for more detailed statements and proofs. We present the results “à la Hasse”, without using ideles. This is more suitable for algorithmic treatment. For an idelic treatment, we refer to . I have largely benefited from the notes of J. Martinet in writing this chapter.epinephrine 发表于 2025-3-23 01:30:03
http://reply.papertrans.cn/15/1464/146364/146364_9.pngKeratectomy 发表于 2025-3-23 07:26:47
Zhi-Jun Zhang,Jiang Pan,Bao-Di Ma,Jian-He Xuor absolute discriminants. However, the algorithmic construction of these extensions is not completely straightforward. There are several ways to do this, but at present the most efficient general method is the use of Kummer extensions. In the next chapter, we will describe two other methods using a