彻底明白 发表于 2025-3-23 09:44:06

http://reply.papertrans.cn/15/1459/145819/145819_11.png

假设 发表于 2025-3-23 15:46:41

http://reply.papertrans.cn/15/1459/145819/145819_12.png

verdict 发表于 2025-3-23 18:16:40

http://reply.papertrans.cn/15/1459/145819/145819_13.png

sleep-spindles 发表于 2025-3-23 22:44:38

Big Data, Simulations and HPC ConvergenceThe goal of statistical learning theory is to study, in a statistical framework, the properties of learning algorithms. In particular, most results take the form of so-called error bounds. This tutorial introduces the techniques that are used to obtain such results.

Petechiae 发表于 2025-3-24 04:23:54

Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/145819.jpg

偶像 发表于 2025-3-24 09:40:37

Big Data Application Architecture,er distinct labeling of the data (supervised learning), division of the data into classes (unsupervised learning), selection of the most significant features of the data (feature selection), or a combination of more than one of these tasks.

SMART 发表于 2025-3-24 11:55:49

http://reply.papertrans.cn/15/1459/145819/145819_17.png

averse 发表于 2025-3-24 16:10:45

http://reply.papertrans.cn/15/1459/145819/145819_18.png

Fecundity 发表于 2025-3-24 22:02:52

Accelerating BigBench on Hadoopated from information theoretic and Bayesian principles. We briefly review basic models in unsupervised learning, including factor analysis, PCA, mixtures of Gaussians, ICA, hidden Markov models, state-space models, and many variants and extensions. We derive the EM algorithm and give an overview of

鸟笼 发表于 2025-3-25 03:04:56

http://reply.papertrans.cn/15/1459/145819/145819_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Advanced Lectures on Machine Learning; ML Summer Schools 20 Olivier Bousquet,Ulrike Luxburg,Gunnar Rätsch Textbook 2004 Springer-Verlag Ber