易受刺激 发表于 2025-3-23 12:07:49

http://reply.papertrans.cn/15/1447/144642/144642_11.png

affinity 发表于 2025-3-23 14:33:38

Fazit Aus Sicht der Herausgeberective of the alternative LMS-based algorithms is either to reduce computational complexity or convergence time. In this chapter, four LMS-based algorithms are presented and analyzed, namely, the quantized-error algorithms [.]–[.], the frequency-domain (or transform-domain) LMS algorithm [.]–[.], th

Moderate 发表于 2025-3-23 20:31:58

http://reply.papertrans.cn/15/1447/144642/144642_13.png

monologue 发表于 2025-3-24 02:11:02

Fazit Aus Sicht der Herausgeberalization are very attractive because they allow modular implementation and require a reduced number of arithmetic operations (of order .) [.]–[.]. As a consequence, the lattice recursive least-squares (LRLS) algorithms are considered fast implementations of the RLS problem.

生命层 发表于 2025-3-24 04:44:21

https://doi.org/10.1007/978-3-658-03515-0e leastsquares (RLS) previously discussed. The main advantages brought about by the recursive least-squares algorithm based on QR decomposition are its possible implementation in systolic arrays [.]–[.] and its improved numerical behavior when quantization effects are taken into account [.].

道学气 发表于 2025-3-24 08:09:58

http://reply.papertrans.cn/15/1447/144642/144642_16.png

hemorrhage 发表于 2025-3-24 11:33:38

http://reply.papertrans.cn/15/1447/144642/144642_17.png

MEN 发表于 2025-3-24 17:46:00

The Least-Mean-Square (LMS) Algorithm,nungs-, Immobilien- und Kreditwirtschaft werden anschließend zinssichernde Swapgeschäfte skizziert. Das Buch schließt mit der konkreten Idee zur Gründung einer eigenen Wohnungswirtschaftsbank. Mit Übungsaufgaben zur eigenständigen Reflexion der Themen.978-3-658-22579-7

错误 发表于 2025-3-24 21:18:55

http://reply.papertrans.cn/15/1447/144642/144642_19.png

稀释前 发表于 2025-3-25 00:39:10

http://reply.papertrans.cn/15/1447/144642/144642_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Adaptive Filtering; Algorithms and Pract Paulo Sergio Ramirez Diniz Book 1997 Springer Science+Business Media New York 1997 Adaptive Filter