惊奇 发表于 2025-3-26 22:43:43

Adaptive Multiagent Reinforcement Learning with Non-positive Regret978-1-4899-6675-9

Flavouring 发表于 2025-3-27 01:27:41

http://reply.papertrans.cn/15/1428/142761/142761_32.png

NATTY 发表于 2025-3-27 09:11:28

http://reply.papertrans.cn/15/1428/142761/142761_33.png

修饰 发表于 2025-3-27 13:03:10

Forecasting Monthly Rainfall in the Western Australian Wheat-Belt up to 18-Months in Advance Using Aows PCs. .This book is a practical tool for advanced undergraduate and graduate electronic engineering students, a resource for their tutors and a guide for the practising electronic engineer..978-1-84628-023-8978-1-84628-173-0

Middle-Ear 发表于 2025-3-27 14:52:54

Concept Drift Detection Using , Histogram-Based Bayesian Classifiersstriedesigns, der Wirtschaftswissenschaften, der Informatik und den sich hieraus ergebenden Brückenstudiengängen wie Sporttechniker oder Wirtschaftsingenieure..• Produktentwickler und Führungskräfte aus der Praxis..978-3-642-41104-5

indignant 发表于 2025-3-27 21:08:18

http://reply.papertrans.cn/15/1428/142761/142761_36.png

aviator 发表于 2025-3-28 01:01:43

http://reply.papertrans.cn/15/1428/142761/142761_37.png

Permanent 发表于 2025-3-28 03:10:07

https://doi.org/10.1007/978-3-319-30866-1two forms of corruption: collusion and espionage. Such a result provides a (limited) basis on which to trust agents acting on our behalf. That work addressed several argumentation semantics, all built on the notion of admissibility. Here we continue this work to three other well-motivated semantics:

Estrogen 发表于 2025-3-28 06:35:50

https://doi.org/10.1007/978-3-319-30866-1s only use positive regrets in updating their learning rules. In this paper, we adopt both positive and negative regrets in reinforcement learning to improve its convergence behaviour. We prove theoretically that the empirical distribution of the joint play converges to the set of correlated equilib

补充 发表于 2025-3-28 13:34:52

http://reply.papertrans.cn/15/1428/142761/142761_40.png
页: 1 2 3 [4] 5 6 7
查看完整版本: Titlebook: AI 2016: Advances in Artificial Intelligence; 29th Australasian Jo Byeong Ho Kang,Quan Bai Conference proceedings 2016 Springer Internation