BRUNT 发表于 2025-3-23 10:12:24
http://reply.papertrans.cn/15/1422/142194/142194_11.png柔美流畅 发表于 2025-3-23 14:24:55
http://reply.papertrans.cn/15/1422/142194/142194_12.pngExpand 发表于 2025-3-23 18:48:55
Partielle Differenzialgleichungen,es are in the centre of modern commutative algebra as a unifying approach. Formally, the notion of a module over a ring is the analogue of the notion of a vector space over a field, in the sense that a module is defined by the same axioms, except that we allow ring elements as scalars and not just fexceptional 发表于 2025-3-24 01:25:47
http://reply.papertrans.cn/15/1422/142194/142194_14.pngAggressive 发表于 2025-3-24 02:39:03
http://reply.papertrans.cn/15/1422/142194/142194_15.pngGOAT 发表于 2025-3-24 10:13:42
https://doi.org/10.1007/978-3-540-73649-3latter rings contain informations about arbitrary small Zariski neighbourhoods of 0 ∈ .. Such neighbourhoods turn out to be still quite large, for instance, if . = 1 then they consist of . minus a finite number of points. If we are working over the field . = ℂ, respectively . = ℝ, we can use the coninchoate 发表于 2025-3-24 12:55:38
http://reply.papertrans.cn/15/1422/142194/142194_17.pngcondescend 发表于 2025-3-24 17:26:57
https://doi.org/10.1007/978-3-540-73649-3, the values of this function are given by a polynomial, the Hilbert polynomial. To show this, we use the Hilbert-Poincaré series, a formal power series in . with coefficients being the values of the Hilbert function. This power series turns out to be a rational function.胆大 发表于 2025-3-24 21:42:16
http://reply.papertrans.cn/15/1422/142194/142194_19.pngLeaven 发表于 2025-3-24 23:28:07
http://reply.papertrans.cn/15/1422/142194/142194_20.png