欢笑 发表于 2025-3-25 06:03:33

A Polynomial Approach to Linear Algebra978-1-4419-8734-1Series ISSN 0172-5939 Series E-ISSN 2191-6675

Directed 发表于 2025-3-25 10:19:15

http://reply.papertrans.cn/15/1418/141738/141738_22.png

颂扬国家 发表于 2025-3-25 12:20:20

Schlußfolgerungen aus der Umfragest elementary components. We do this by representing the transformation by its matrix with respect to particularly appropriate bases. The ultimate goal, which is not always achievable, is to represent a linear transformation in diagonal form.

mechanism 发表于 2025-3-25 18:35:45

http://reply.papertrans.cn/15/1418/141738/141738_24.png

brachial-plexus 发表于 2025-3-25 21:50:48

E. Gebert,C. van de Loo,G. Stange,P. Kamgangecifically on the themes of external and internal representations of systems and the associated realization theory. We feel that these topics are to be considered as an essential part of linear algebra. In fact, the notions of reachability and observability, introduced by Kaiman (see Kaiman a

Isolate 发表于 2025-3-26 02:57:04

http://reply.papertrans.cn/15/1418/141738/141738_26.png

conceal 发表于 2025-3-26 06:11:16

H. Teuteberg,H.U. Gerbershagen,M. HalmagyiLet . be a commutative ring with identity. Let . be a matrix, and let .,...,. be its columns.

即席 发表于 2025-3-26 09:56:24

Schlußfolgerungen aus der UmfrageDefinition 4.1.1 . linear transformation

浮雕宝石 发表于 2025-3-26 14:35:33

Schlußfolgerungen aus der UmfrageWe turn our attention now to the study of a special class of cyclic transformations, namely, shift operators. These turn out later to serve as models for all cyclic transformations, in the sense that every cyclic transformation is similar to a shift operator.

并置 发表于 2025-3-26 20:14:42

Das Narkoseverfahren bei der TympanoplastikIn this chapter we focus on the study of linear spaces and linear transformations that relate to notions of distance, angle, and orthogonality. We restrict ourselves throughout to the case of the real field . or the complex field ..
页: 1 2 [3] 4 5
查看完整版本: Titlebook: A Polynomial Approach to Linear Algebra; Paul A. Fuhrmann Textbook 19961st edition Springer Science+Business Media New York 1996 algebra.a