LEVY 发表于 2025-3-23 13:02:37
A Mathematical Introduction to Conformal Field TheoryFecundity 发表于 2025-3-23 15:20:09
http://reply.papertrans.cn/15/1414/141398/141398_12.png消散 发表于 2025-3-23 19:28:05
https://doi.org/10.1007/978-3-540-68628-6algebra; conformal field theory; verlinde formula; vertex algebra; virasoro algebra文件夹 发表于 2025-3-24 01:52:21
http://reply.papertrans.cn/15/1414/141398/141398_14.png认为 发表于 2025-3-24 06:01:58
M. SchottenloherIncludes supplementary material:Infirm 发表于 2025-3-24 08:08:28
http://reply.papertrans.cn/15/1414/141398/141398_16.png冒号 发表于 2025-3-24 10:52:43
http://reply.papertrans.cn/15/1414/141398/141398_17.pngKindle 发表于 2025-3-24 18:33:22
Book 2008Latest editionnd its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. The secoopinionated 发表于 2025-3-24 22:38:44
0075-8450 ssical conformal symmetry in n dimensions and its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central exte猜忌 发表于 2025-3-25 02:51:33
http://reply.papertrans.cn/15/1414/141398/141398_20.png