Pessimistic 发表于 2025-3-21 18:49:29
书目名称A Ludic Journey into Geometric Topology影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0141367<br><br> <br><br>书目名称A Ludic Journey into Geometric Topology读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0141367<br><br> <br><br>后退 发表于 2025-3-21 21:45:24
http://reply.papertrans.cn/15/1414/141367/141367_2.pngOutshine 发表于 2025-3-22 01:51:34
http://reply.papertrans.cn/15/1414/141367/141367_3.png现晕光 发表于 2025-3-22 05:21:09
https://doi.org/10.1007/978-3-319-11866-6f non-Euclidean geometries. In 1872, Felix Klein presented a way to define geometries without axioms, organizing the space in congruence classes, allowing a multitude of geometries defined in a given space. Klein’s program inaugurated a kind of postmodernity in geometry.某人 发表于 2025-3-22 10:05:21
http://reply.papertrans.cn/15/1414/141367/141367_5.pngMalaise 发表于 2025-3-22 16:48:32
http://reply.papertrans.cn/15/1414/141367/141367_6.png宣传 发表于 2025-3-22 20:11:29
Near Field Communication Technology for AALmensional objects that we can see or touch. For three-dimensional objects finite in size and without boundary, called hypersurfaces here, we have no physical models, therefore they are much harder to represent. However, by analogy with the modeling of lower-dimensional objects, we can expand our understanding of some hypersurfaces.slow-wave-sleep 发表于 2025-3-22 22:04:46
http://reply.papertrans.cn/15/1414/141367/141367_8.png高深莫测 发表于 2025-3-23 02:34:14
http://reply.papertrans.cn/15/1414/141367/141367_9.pngConduit 发表于 2025-3-23 09:11:52
http://reply.papertrans.cn/15/1414/141367/141367_10.png