Reagan 发表于 2025-3-21 19:03:41

书目名称A First Course in Bayesian Statistical Methods影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0140748<br><br>        <br><br>书目名称A First Course in Bayesian Statistical Methods读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0140748<br><br>        <br><br>

Airtight 发表于 2025-3-21 20:18:02

http://reply.papertrans.cn/15/1408/140748/140748_2.png

HARD 发表于 2025-3-22 01:18:09

https://doi.org/10.1007/978-94-007-7557-2e central limit theorem, and another being that the normal model is a simple model with separate parameters for the population mean and variance – two quantities that are often of primary interest. In this chapter we discuss some of the properties of the normal distribution, and show how to make pos

aristocracy 发表于 2025-3-22 04:41:27

AQ Mapping Through Low-Cost Sensor Networks,at it is easy to sample from the full conditional distribution of each parameter. In such cases, posterior approximation can be made with the Gibbs sampler, an iterative algorithm that constructs a dependent sequence of parameter values whose distribution converges to the target joint posterior dist

SPALL 发表于 2025-3-22 08:52:01

http://reply.papertrans.cn/15/1408/140748/140748_5.png

容易做 发表于 2025-3-22 16:11:05

Amina Khatun,Trisha Barman,Pulak Kumar Patraaverage and their difference. This type of parameterization is extended to the multigroup case, where the average group mean and the differences across group means are described by a normal sampling model. This model, together with a normal sampling model for variability among units within a group,

鄙视 发表于 2025-3-22 17:24:30

J. Kukkonen,L. Bozó,F. Palmgren,R. S. Sokhition and data description. In this section we give a very brief introduction to the linear regression model and the corresponding Bayesian approach to estimation. Additionally, we discuss the relationship between Bayesian and ordinary least squares regression estimates.

利用 发表于 2025-3-22 22:43:24

C. Borrego,M. Schatzmann,S. Galmarinisampler. In situations where a conjugate prior distribution is unavailable or undesirable, the full conditional distributions of the parameters do not have a standard form and the Gibbs sampler cannot be easily used. In this section we present the Metropolis-Hastings algorithm as a generic method of

圆桶 发表于 2025-3-23 04:09:33

http://reply.papertrans.cn/15/1408/140748/140748_9.png

Ingrained 发表于 2025-3-23 09:21:37

http://reply.papertrans.cn/15/1408/140748/140748_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: A First Course in Bayesian Statistical Methods; Peter D. Hoff Textbook 2009 Springer-Verlag New York 2009 Markov chain.Statistical Computi