压缩
发表于 2025-3-21 19:50:02
书目名称A Course in Simple-Homotopy Theory影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0140502<br><br> <br><br>
curettage
发表于 2025-3-21 21:39:55
0072-5285a strong belief that there should be readily available a semi-historical and geo metrically motivated exposition of J. H. C. Whitehead‘s beautiful theory of simple-homotopy types; that the best way to understand this theory is to know how and why it was built. This belief is buttressed by the fact
enmesh
发表于 2025-3-22 03:39:15
A Course in Simple-Homotopy Theory978-1-4684-9372-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
泄露
发表于 2025-3-22 05:05:37
https://doi.org/10.1007/978-1-4684-9372-6Algebraic topology; CW complex; Homotopy; homology; homotopy theory
Ganglion-Cyst
发表于 2025-3-22 09:00:51
http://reply.papertrans.cn/15/1406/140502/140502_5.png
Infelicity
发表于 2025-3-22 13:46:31
The Europeanization of the East-West SystemThis chapter describes the setting which the book assumes and the goal which it hopes to achieve.
Commentary
发表于 2025-3-22 18:46:16
https://doi.org/10.1007/978-1-349-21350-4From here on all CW complexes mentioned will be assumed finite unless they occur as the covering spaces of given finite complexes.
MURKY
发表于 2025-3-23 00:15:29
https://doi.org/10.1007/978-1-349-21350-4The geometry in Chapter II and the algebraic analysis of Chapter III are synthesized in the definition:
无能性
发表于 2025-3-23 03:14:29
https://doi.org/10.1007/978-3-030-43343-7In this chapter we give a detailed introduction to the theory of lens spaces.. These spaces are fascinating in their own right and will supply examples on which to make the preceding theory concrete.
Incorruptible
发表于 2025-3-23 08:33:35
http://reply.papertrans.cn/15/1406/140502/140502_10.png