压缩 发表于 2025-3-21 19:50:02
书目名称A Course in Simple-Homotopy Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0140502<br><br> <br><br>书目名称A Course in Simple-Homotopy Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0140502<br><br> <br><br>curettage 发表于 2025-3-21 21:39:55
0072-5285a strong belief that there should be readily available a semi-historical and geo metrically motivated exposition of J. H. C. Whitehead‘s beautiful theory of simple-homotopy types; that the best way to understand this theory is to know how and why it was built. This belief is buttressed by the factenmesh 发表于 2025-3-22 03:39:15
A Course in Simple-Homotopy Theory978-1-4684-9372-6Series ISSN 0072-5285 Series E-ISSN 2197-5612泄露 发表于 2025-3-22 05:05:37
https://doi.org/10.1007/978-1-4684-9372-6Algebraic topology; CW complex; Homotopy; homology; homotopy theoryGanglion-Cyst 发表于 2025-3-22 09:00:51
http://reply.papertrans.cn/15/1406/140502/140502_5.pngInfelicity 发表于 2025-3-22 13:46:31
The Europeanization of the East-West SystemThis chapter describes the setting which the book assumes and the goal which it hopes to achieve.Commentary 发表于 2025-3-22 18:46:16
https://doi.org/10.1007/978-1-349-21350-4From here on all CW complexes mentioned will be assumed finite unless they occur as the covering spaces of given finite complexes.MURKY 发表于 2025-3-23 00:15:29
https://doi.org/10.1007/978-1-349-21350-4The geometry in Chapter II and the algebraic analysis of Chapter III are synthesized in the definition:无能性 发表于 2025-3-23 03:14:29
https://doi.org/10.1007/978-3-030-43343-7In this chapter we give a detailed introduction to the theory of lens spaces.. These spaces are fascinating in their own right and will supply examples on which to make the preceding theory concrete.Incorruptible 发表于 2025-3-23 08:33:35
http://reply.papertrans.cn/15/1406/140502/140502_10.png