necrosis 发表于 2025-3-21 18:31:47
书目名称Women in Numbers Europe IV影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV网络公开度<br> http://impactfactor.cn/at/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV被引频次<br> http://impactfactor.cn/tc/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV年度引用<br> http://impactfactor.cn/ii/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK1030389<br><br> <br><br>书目名称Women in Numbers Europe IV读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK1030389<br><br> <br><br>GULF 发表于 2025-3-22 00:13:39
https://doi.org/10.1007/978-3-031-52163-8arithmetic geometry; cryptography; Women in Numbers Europe; WiNE4; Eigenvarieties; Diophantine setsmeretricious 发表于 2025-3-22 02:35:16
978-3-031-52165-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl洁净 发表于 2025-3-22 06:02:38
http://reply.papertrans.cn/104/10304/1030389/1030389_4.png碳水化合物 发表于 2025-3-22 12:04:05
http://reply.papertrans.cn/104/10304/1030389/1030389_5.png得体 发表于 2025-3-22 16:54:03
Transcendence Measure of ,For a given transcendental number . and for any polynomial ., we know that . Let . and . be the infimum of the numbers . satisfying the estimate . for all . with .. Any function greater than or equal to . is a . .. In this article, we find out a transcendence measure of . which improves the earlier results.小隔间 发表于 2025-3-22 20:53:48
Ramla Abdellatif,Valentijn Karemaker,Lejla SmajlovGathers clear and innovative chapters covering a wide range of subareas in number theory and algebraic geometry.Reports on recent progress and open problems.Features high-quality contributions by oft-HIKE 发表于 2025-3-22 22:17:50
Power Values of Power Sums: A Survey,(computational) number theory in recent years. In this survey, we present the key tools and techniques employed thus far in the (explicit) resolution of Diophantine problems, as well as an overview of existing results. We also state some open problems that naturally arise in the process.aerobic 发表于 2025-3-23 01:24:19
http://reply.papertrans.cn/104/10304/1030389/1030389_9.pngORBIT 发表于 2025-3-23 06:18:04
http://reply.papertrans.cn/104/10304/1030389/1030389_10.png