哑剧表演 发表于 2025-3-21 16:10:57
书目名称Weighted Hardy Spaces影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces网络公开度<br> http://impactfactor.cn/at/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces被引频次<br> http://impactfactor.cn/tc/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces年度引用<br> http://impactfactor.cn/ii/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK1021971<br><br> <br><br>书目名称Weighted Hardy Spaces读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK1021971<br><br> <br><br>CULP 发表于 2025-3-21 23:24:15
Lecture Notes in Mathematicshttp://image.papertrans.cn/w/image/1021971.jpgPACT 发表于 2025-3-22 01:23:27
http://reply.papertrans.cn/103/10220/1021971/1021971_3.png水獭 发表于 2025-3-22 04:58:40
http://reply.papertrans.cn/103/10220/1021971/1021971_4.pngLiability 发表于 2025-3-22 12:12:42
http://reply.papertrans.cn/103/10220/1021971/1021971_5.pngMusculoskeletal 发表于 2025-3-22 16:38:39
http://reply.papertrans.cn/103/10220/1021971/1021971_6.png祖先 发表于 2025-3-22 19:09:12
0075-8434 sed. The authors consider properties of weights in a general setting; they derive mean value inequalities for wavelet transforms and introduce halfspace techniques with, for example, nontangential maximal functions and g-functions. This leads to several equivalent definitions of the weighted Hardy sMortar 发表于 2025-3-22 21:41:34
http://reply.papertrans.cn/103/10220/1021971/1021971_8.png惹人反感 发表于 2025-3-23 03:41:58
Book 1989Fourier multipliers and singular integral operators are applied to the weighted Hardy spaces and complex interpolation is considered. One tool often used here is the atomic decomposition. The methods developed by the authors using the atomic decomposition in the strictly convex case p>1 are of special interest.追踪 发表于 2025-3-23 09:37:15
http://reply.papertrans.cn/103/10220/1021971/1021971_10.png