使作呕 发表于 2025-3-21 19:12:39
书目名称Web and Big Data影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data网络公开度<br> http://impactfactor.cn/at/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data被引频次<br> http://impactfactor.cn/tc/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data年度引用<br> http://impactfactor.cn/ii/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK1021663<br><br> <br><br>书目名称Web and Big Data读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK1021663<br><br> <br><br>发炎 发表于 2025-3-21 22:49:36
http://reply.papertrans.cn/103/10217/1021663/1021663_2.png小样他闲聊 发表于 2025-3-22 01:53:38
http://reply.papertrans.cn/103/10217/1021663/1021663_3.png完全 发表于 2025-3-22 06:57:53
https://doi.org/10.1007/978-981-97-7238-4Machine Learning; Data mining; Graph data, RDF, social networks; Natural language processing; Knowledge水土 发表于 2025-3-22 11:30:03
Temporalformer: A Temporal Decomposition Causal Transformer Network For Wind Power Forecasting Time2Vec instead of the traditional sine and cosine positional encoding to better capture temporal information. Meanwhile, a temporal causal convolutional network (TCN) is added to the multi-head attention mechanism, which helps to enhance the ability of the Transformer network to extract local tem含水层 发表于 2025-3-22 14:22:24
http://reply.papertrans.cn/103/10217/1021663/1021663_6.pngPSA-velocity 发表于 2025-3-22 17:55:22
http://reply.papertrans.cn/103/10217/1021663/1021663_7.png血统 发表于 2025-3-23 00:10:42
http://reply.papertrans.cn/103/10217/1021663/1021663_8.png不能强迫我 发表于 2025-3-23 03:55:09
Dynamic-Static Fusion for Spatial-Temporal Anomaly Detection and Interpretation in Multivariate Timetegrate them into an effective spatial-temporal conditional constraints through graph convolution operations. During this process, we design a Dual Temporal Graph Attention Module and a Graph Neural Ordinary Differential Equations Module to capture non-stationary temporal features and fully continuo引水渠 发表于 2025-3-23 09:05:54
http://reply.papertrans.cn/103/10217/1021663/1021663_10.png