生手 发表于 2025-3-21 16:51:29
书目名称Web and Big Data影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK1021655<br><br> <br><br>书目名称Web and Big Data读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK1021655<br><br> <br><br>GEON 发表于 2025-3-21 23:55:20
http://reply.papertrans.cn/103/10217/1021655/1021655_2.png是比赛 发表于 2025-3-22 02:52:31
http://reply.papertrans.cn/103/10217/1021655/1021655_3.pngCLAN 发表于 2025-3-22 06:49:10
Personalized POI Groups Recommendation in Location-Based Social Networksgree to each PPG covering the target users’ POI preferences. The system recommends the target user with the PPGs which have the top-N largest scores, and it is one NP-hard problem. This paper proposes the greedy algorithm to solve it. Extensive experiments on the two LBSN datasets illustrate the effectiveness of our proposed algorithm.愤慨一下 发表于 2025-3-22 11:43:25
Skyline-Based Recommendation Considering User Preferences are recommended and attribute values in a dense area are quantized into a single value. The result of the experiments suggest that the density-aware scoring provides equal to or greater accuracy than the basic scoring.RADE 发表于 2025-3-22 13:23:39
http://reply.papertrans.cn/103/10217/1021655/1021655_6.pngendarterectomy 发表于 2025-3-22 18:20:09
Distributed Data Mining for Root Causes of KPI Faults in Wireless Networksinterpretation of the tree model. In order to solve the problem of memory and efficiency associated with large-scale data, we parallelize the algorithm and distribute the tasks to multiple computers. The experiments show that DRCA is an effective, efficient, and scalable method.ADORN 发表于 2025-3-22 22:27:57
Distributed Data Mining for Root Causes of KPI Faults in Wireless Networksinterpretation of the tree model. In order to solve the problem of memory and efficiency associated with large-scale data, we parallelize the algorithm and distribute the tasks to multiple computers. The experiments show that DRCA is an effective, efficient, and scalable method.airborne 发表于 2025-3-23 02:11:24
http://reply.papertrans.cn/103/10217/1021655/1021655_9.pngAMBI 发表于 2025-3-23 06:57:23
http://reply.papertrans.cn/103/10217/1021655/1021655_10.png